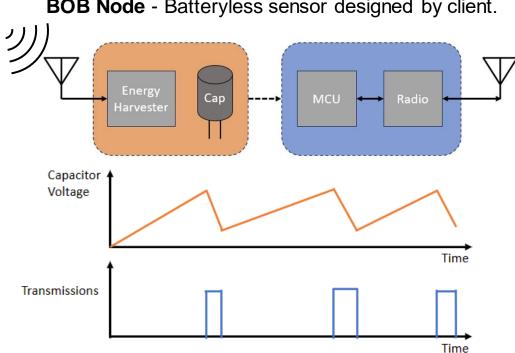
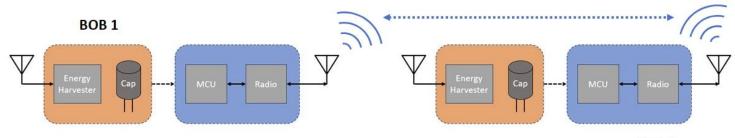
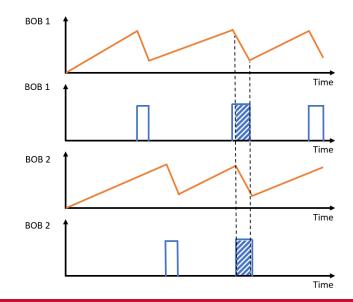
Distributed Sniffer Nodes for Batteryless Sensor Nodes (sdmay24-25)


Team Lead/ Software Lead: Thomas Gaul Hardware Lead: Tori Kittleson Hardware Member: Matthew Crabb Software Member: Spencer Sutton Scribe/Software Member: Ian Hollingworth

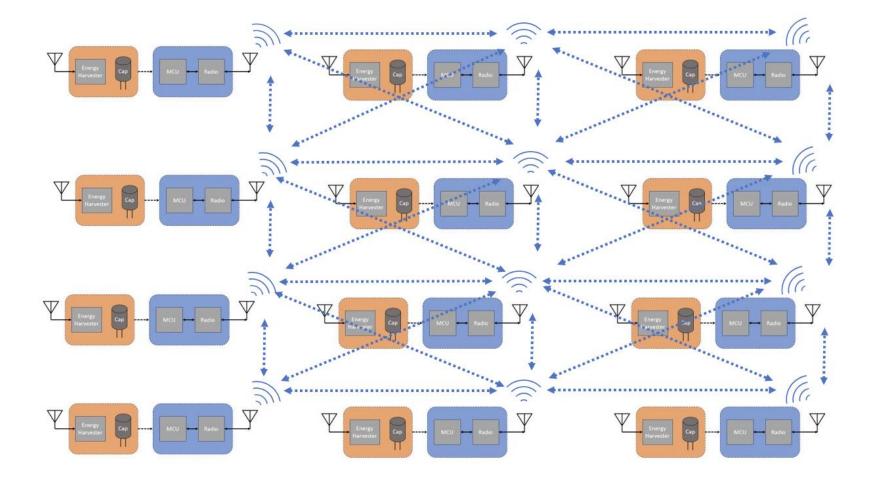
Advisor/Client: Henry Duwe CPRE/EE 492 Spring 2024

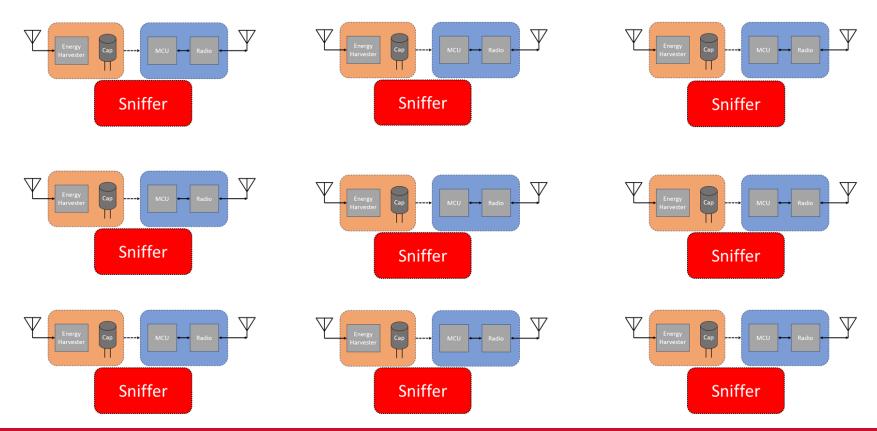

https://sdmay24-25.sd.ece.iastate.edu/ IOWA STATE UNIVERSITY

Project Overview



BOB Node - Batteryless sensor designed by client.


IOWA STATE UNIVERSITY



IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Goal: Create testbed for researchers to use for the batteryless nodes they are developing.

IOWA STATE UNIVERSITY

Use Cases

Scenario Node Tests

- Single node experiments
- Multi-node and single lab experiments
- Large scale testing (goal of 100 1000)

Users

- Dr. Duwe's research group
- Universities, companies, hobbyists through open-source nature

Potential Impact

- Factory condition monitoring
- Weather monitoring and recording
- Forest fire detection in national parks

p. 11

IOWA STATE UNIVERSITY

Requirements

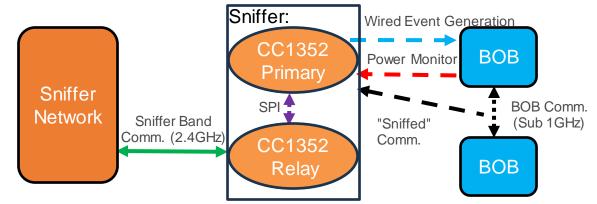
Functional

- 9 BOB/Sniffer pairs
- Sink Sniffer Node with continuous power
- Host system to organize and store Sniffer logs
- Sniffer Nodes powered for one week
- Sniffer Nodes inflict minimal effects on BOB Nodes
- BOB Nodes electrically isolated from one another
- Modular stack of BOB and Sniffer custom boards

Non-functional

- Scalable for a potential larger (100+ node) design
- Documentation
- Mechanical durability of system

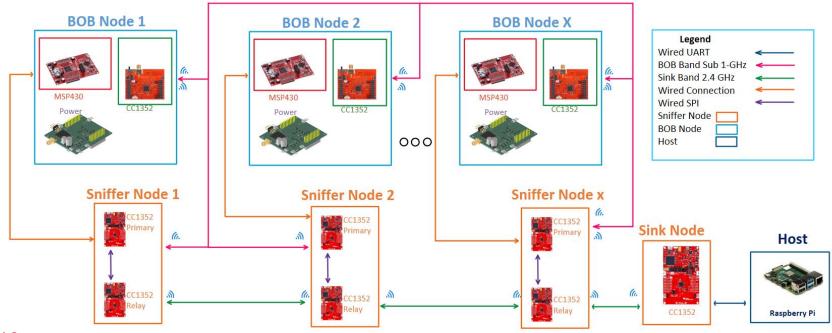
Deliverables


- Breakout Board Hardware
- MSP Simplified Hardware
- Sniffer Node Hardware
- Sniffer Node Software
- Open-Source Documentation
- Mechanically Sound System

p. 9

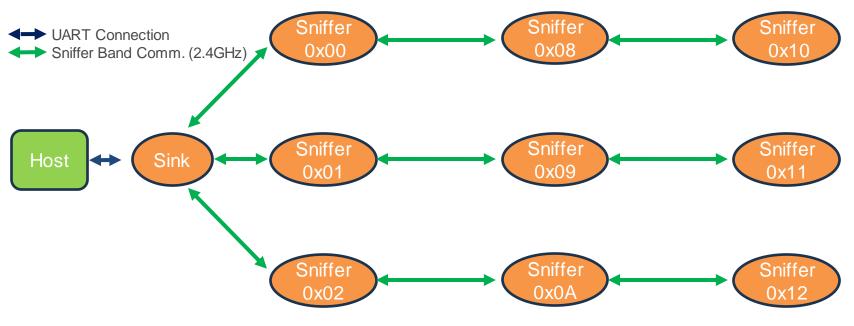
Sniffer Design

Tasks


- Monitor BOB status via GPIO
- Generate events for BOB via GPIO
- Monitor BOB radio communication
- Send test data to be saved

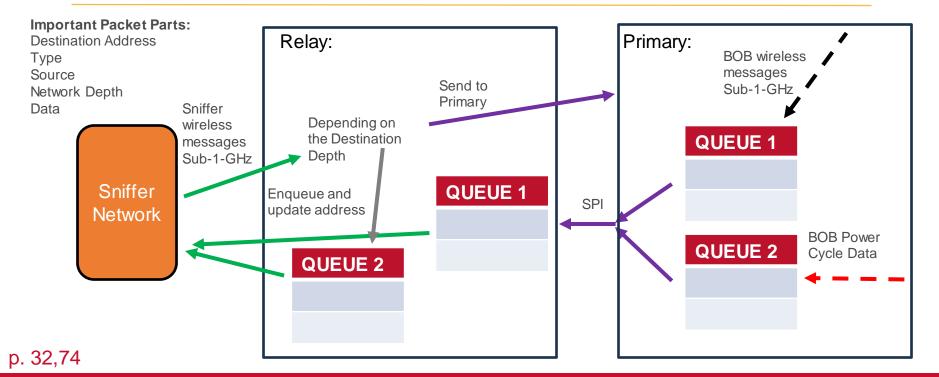
p. 74

IOWA STATE UNIVERSITY

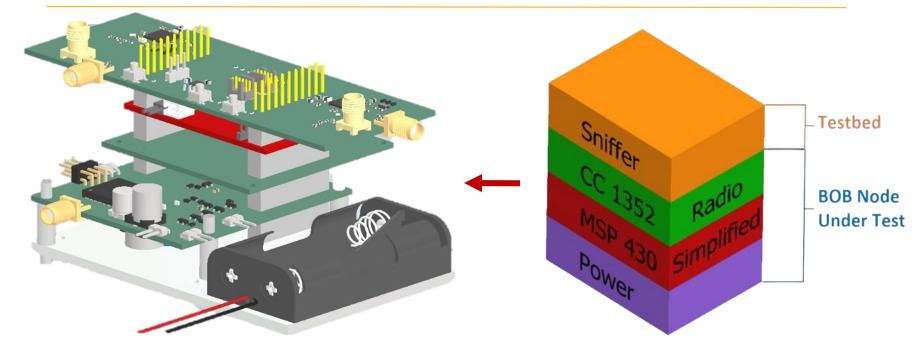

System Design

p. 18

IOWA STATE UNIVERSITY

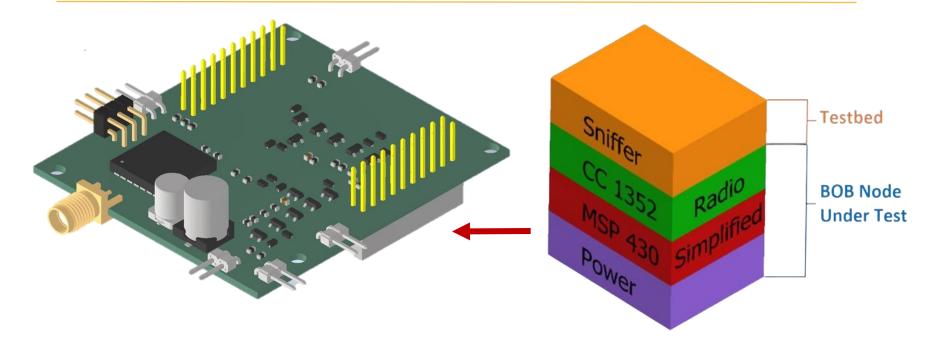

System Design

p. 74


IOWA STATE UNIVERSITY

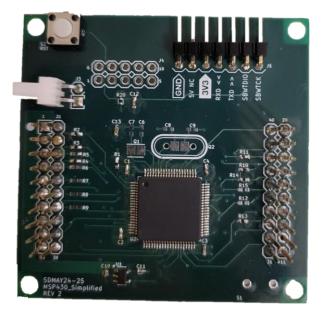
Software Design

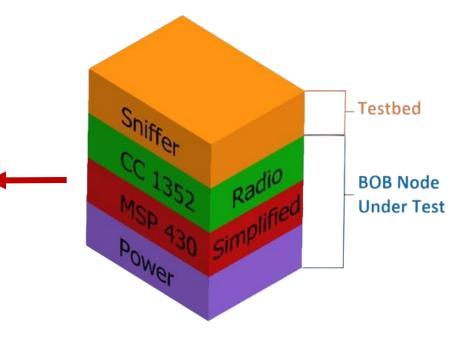
IOWA STATE UNIVERSITY


System Physical Design – PCB Stackup and Mounting

p. 19

IOWA STATE UNIVERSITY

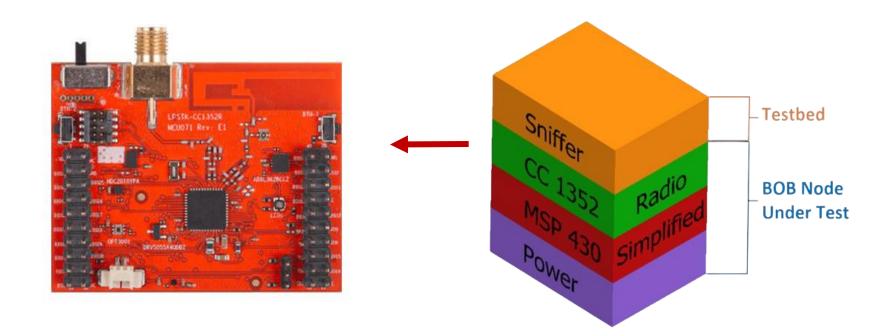

System Physical Design – Power Harvester PCB



p. 19

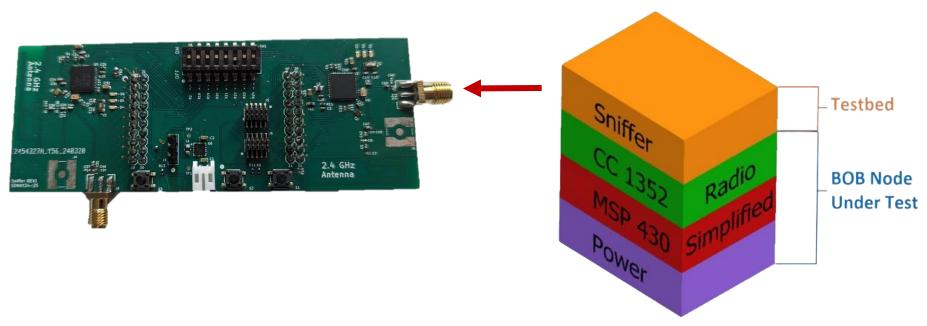
IOWA STATE UNIVERSITY

System Physical Design – MSP430 Simplified PCB



p. 19

IOWA STATE UNIVERSITY


System Physical Design – CC1352 Radio PCB

p. 19

IOWA STATE UNIVERSITY

System Physical Design – Sniffer PCB

IOWA STATE UNIVERSITY

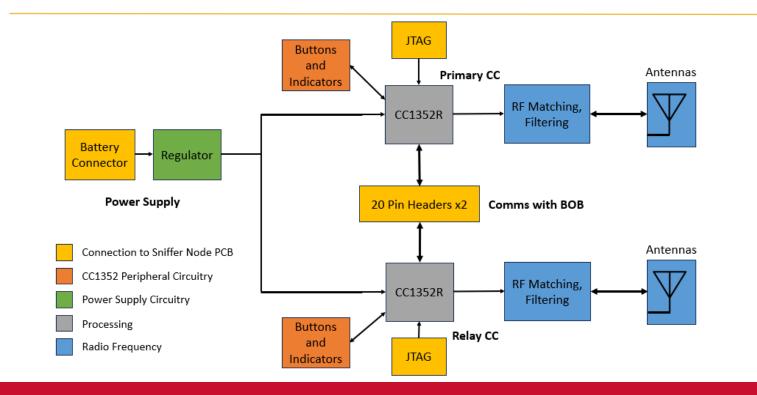
Sniffer PCB Design – Battery System

Chose to use rechargeable NiMH AA batteries

Pros:

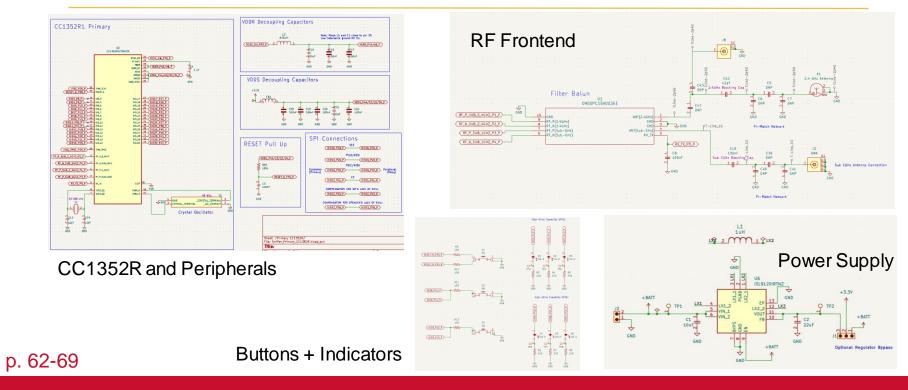
- Standard size, widely available
- Rechargeable 1,000x
- Simple, low-cost mounting solutions
- Multiple manufacturers
- Off the shelf or custom charging solutions
- Flexibility

Cons:

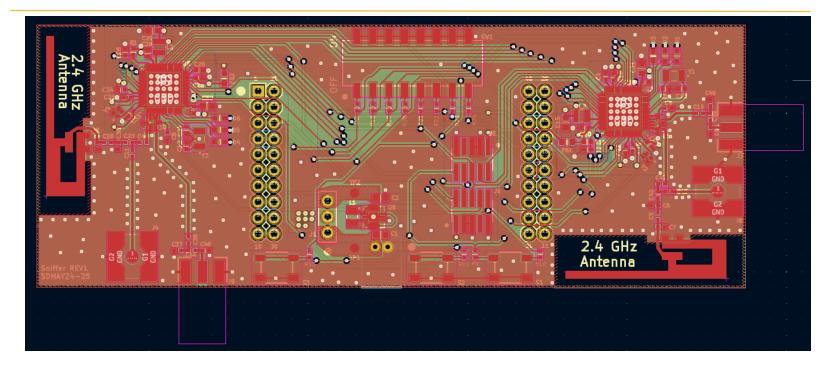

- Lower capacity than some other options
- Charging, protection, fuel gauge ICs not as widely available

p. 71

IOWA STATE UNIVERSITY


Sniffer PCB Design – Block Diagram

p. 60


IOWA STATE UNIVERSITY

Sniffer PCB Design – KiCad Schematics

IOWA STATE UNIVERSITY

Sniffer PCB Design – KiCad Layout

p. 70

IOWA STATE UNIVERSITY

Costs

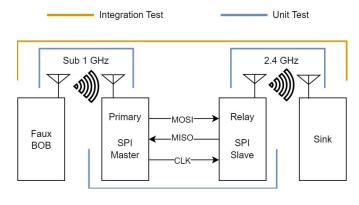
Senior Design Cost Breakdown		
ltem	Cost Per Node	Overall Cost
Breakout Board	-	\$37.83
MSP_Simplified	~\$31	\$234.60
Sniffer Board	~\$56	\$611.88
Batteries and Chargers	~\$12	\$112.05
Additional parts	-	\$29.29
Mechanical Design	~\$4	\$34.60
Total	~\$103	\$1060.25

p. 73

IOWA STATE UNIVERSITY

Testing

Unit Test

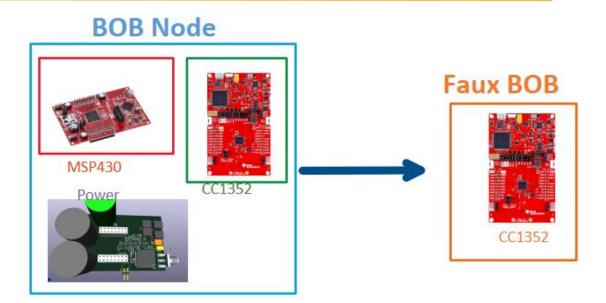

- SPI communication, Sub 1GHz communication, and 2.4 GHz Communication
- · Electrical continuity and power checks
- Programming boards

Integration Tests

- SPI with Sub 1Ghz and 2.4 GHz communication
- Software with custom hardware

System wide

• Data transfer between multiple nodes


p. 34

IOWA STATE UNIVERSITY

Faux BOB

Goal

- Create a test tool
- Emulate BOB functionality
- Allows us to have a known test

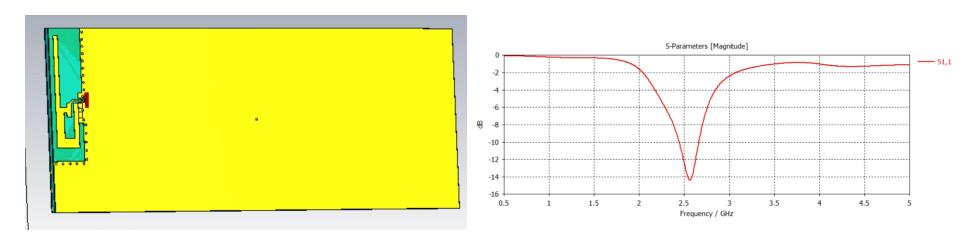
p. 53

IOWA STATE UNIVERSITY

Initial Plan

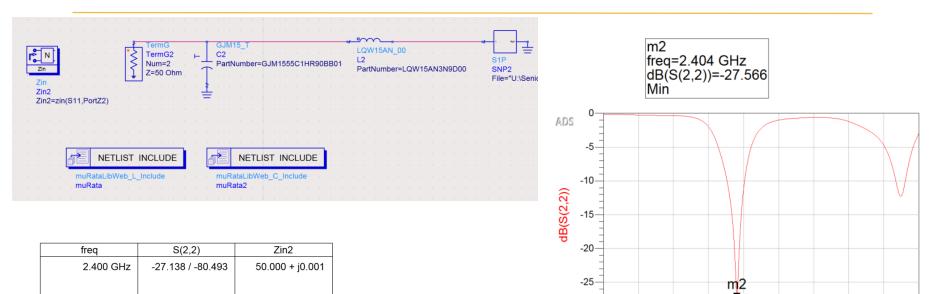
- Use a spectrum analyzer to tune the internal CC1352R load capacitors
- Ignore Sub-1GHz matching (all components assumed to have 50Ω ref impedance)
- Extract S-parameter information from 2.4GHz PCB antenna using a VNA and match

Problem


• Using equipment requires supervision + approval – could not get access until too late

Solution

p. 55


- Model antenna on the computer and simulate its operation
- Use simulation tools to find correct matching values

IOWA STATE UNIVERSITY

p. 55

IOWA STATE UNIVERSITY

p. 56

IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering | 26

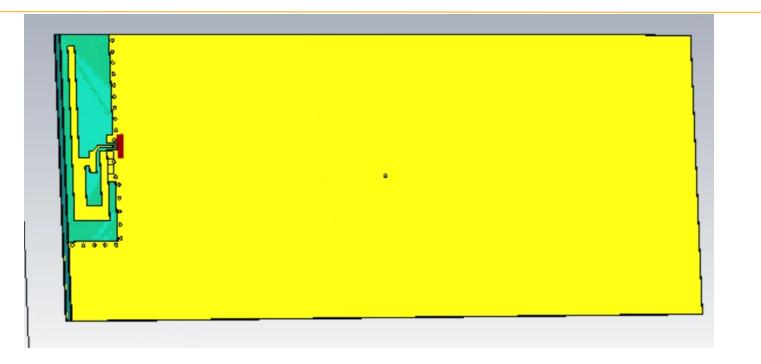
2.0

2.5

3.0

freq, GHz

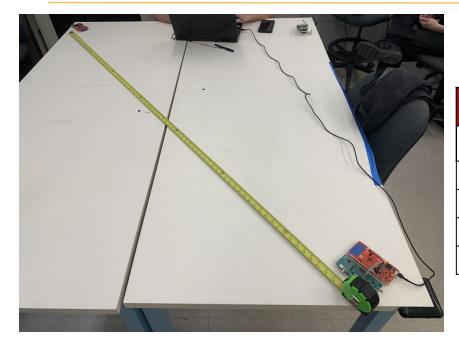
3.5


4.0

4.5

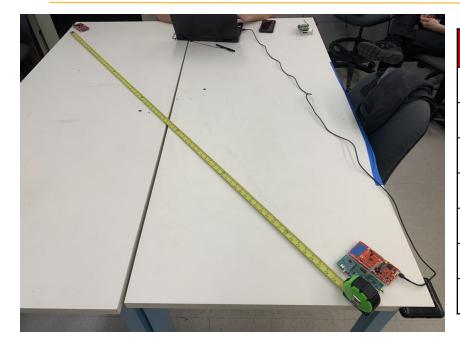
5.0

1.5


1.0

IOWA STATE UNIVERSITY

Radio Testing with TI SmartRF Studio

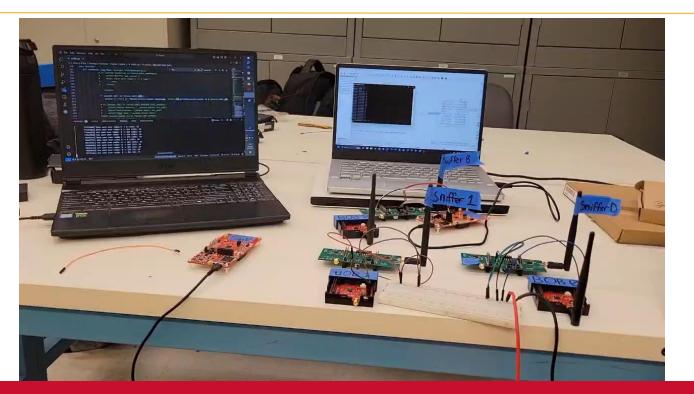

2.4GHz Wireless Testing

Test Configuration	RSSI (dBm)
$REF1 \to REF2$	-52.7
$REF1 \leftarrow REF2$	-53.7
Sniffer (1) \rightarrow REF2	-53.1
Sniffer (1) ← REF2	-53.1

p. 46, 56

IOWA STATE UNIVERSITY

Radio Testing with TI SmartRF Studio



Sub-1GHz Wireless Testing			
Test Configuration	RSSI (dBm)		
$REF1 \to REF2$	-31.9		
$REF1 \leftarrow REF2$	-39.8		
Sniffer (1) \rightarrow REF2	-80.2		
Sniffer (1) \leftarrow REF2	-80.8		
Sniffer (2) \rightarrow REF2	-39.2		
Sniffer (2) ← REF2	-33.4		

p. 46, 56

IOWA STATE UNIVERSITY

Demo

p. 57

IOWA STATE UNIVERSITY

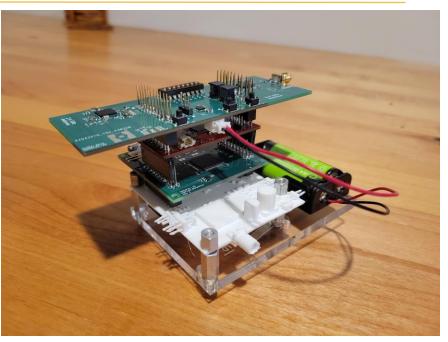
Challenges & Lessons Learned

Hardware

- RF design
- Multiple PCBs

Software

- Real Time Operating System
- Multiple Code bases
- Multi-threading
- Interrupt based programming


Integration Challenges

- CC1352 Revision with Errata
- CC1352 breaking due to clock issues

IOWA STATE UNIVERSITY

Future Work

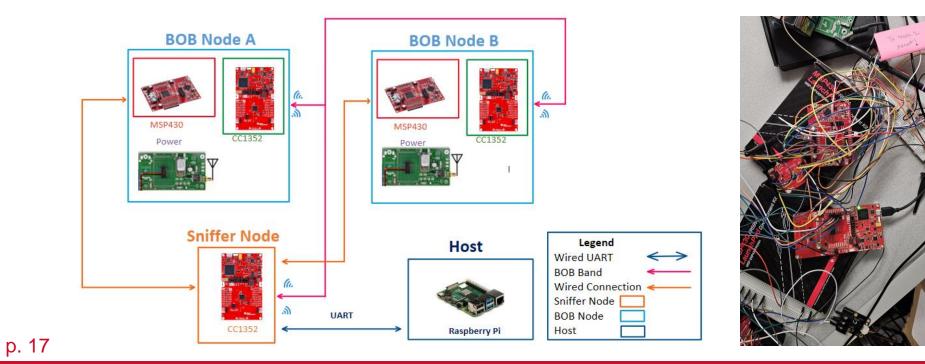
- Integrating more nodes into the communication network.
- More rigorous load testing to ensure no packet loss
- Integrate project with researcher's testbed

p. 81

IOWA STATE UNIVERSITY

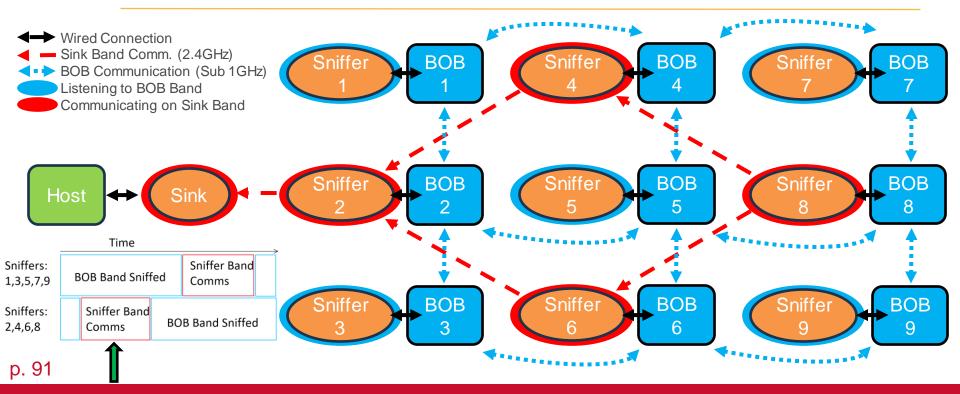
Back-up Slides

Literature Study

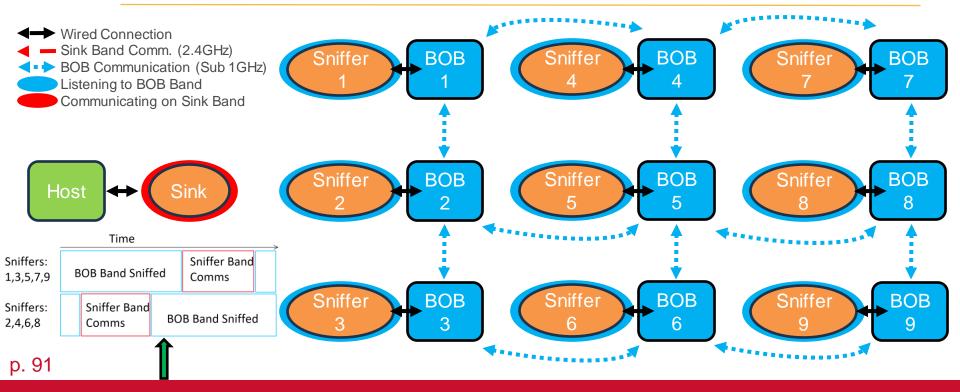

•"Experimental Study of Lifecycle Management Protocols for Batteryless Intermittent Communication"[2]

•"Toward a Shared Sense of Time for a Network of Batteryless, Intermittentlypowered Nodes"[3]

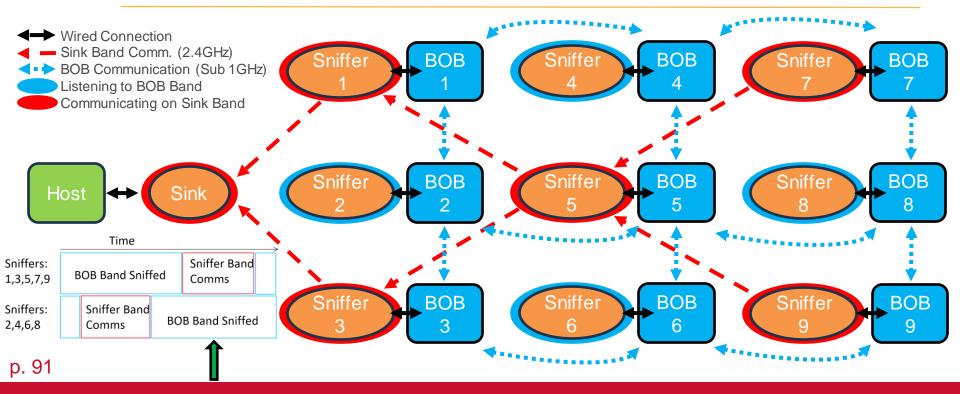
•"Reliable Timekeeping for Intermittent Computing"[4]



Current Design


IOWA STATE UNIVERSITY

System Design


IOWA STATE UNIVERSITY

System Design

IOWA STATE UNIVERSITY

System Design

IOWA STATE UNIVERSITY

Hardware Cost Estimates

Cost for	Single Board									
Item #	Designator	Manufacturer	Mfg Part #	Description / Value	Package	Supplier	Link	Qty	Cost	Total Cost
1	U1	GLF Integrated Power	GLF1111	Power Switch/Driver P-Channel 2A	SOT-23-5L	DigiKey	https://www.d	1	0.33	0.33
2	C1, C2	Samsung Electro-Mechanics	CL05A104KA5NNNC	CAP CER 0.1UF 25V X5R 0402	0402	DigiKey	https://www.d	2	0.01	0.02
3	J1	Samtec Inc.	SSW-110-03-G-D	CONN RCPT 20POS 0.1 GOLD PCB	-	DigiKey	https://www.d	2	3.89	7.78
4	J2	Molex	22122024	TH, Right Angle 2 position 0.100" (2.54mm)	5	DigiKey	https://www.d	1	0.77	0.77
5	R1	Stackpole Electronics	RMCF0805ZT0R00	RES 0 OHM JUMPER 1/8W 0805	0805	DigiKey	https://www.d	1	0.018	0.018
6	-	-	-	Board Fabrication	-	JLCPCB		1	3.892	3.892
								Total Cos	t	12.48

Breakout Board PCB Total Cost (5 boards): \$20

Cost Per Breakout Board

Cost	for single board									
Item #	Designator	Manufacturer	Mfg Part #	Description / Value	Package	Supplier	Link	Qty	Cost	Total Cost
1	U1	GLF Integrated Power	GLF1111	Power Switch/Driver P-Channel 2A	SOT-23-5L	DigiKey	https://www	1	0.33	0.33
2	C1, C2, C3, C4, C10, C11	TDK Corporation	C1005X5R1A104M050B	CAP CER 0.1UF 10V X5R 0402	0402	DigiKey	C1005X5R1A	6	0.021	0.126
3	J2	Samtec Inc.	SSW-110-03-G-D	CONN RCPT 20POS 0.1 GOLD PCB		DigiKey	SSW-110-03	2	3.89	7.78
4	J3	Molex	22122024	TH, Right Angle 2 position 0.100" (2.54mm)	-	DigiKey	https://www	1	0.64	0.64
5	C6, C7	TDK Corporation	C1005C0G1H220J050BA	CAP CER 22PF 50V COG 0402	0402	DigiKey	C1005C0G1H	2	0.047	0.094
6	C12	TDK Corporation	C1005X7R1H102K050BA	CAP CER 1000PF 50V X7R 0402	0402	DigiKey	C1005X7R1H	1	0.051	0.051
7	C13	Murata Electronics	GRM155R61A106ME11[CAP CER 10UF 10V X5R 0402	0402	DigiKey	GRM155R61A	1	0.091	0.091
8	J1	Sullins Connector Solution	PRPC007SBAN-M71RC	CONN HEADER R/A 7POS 2.54MM	-	DigiKey	PRPC007SBA	1	0.191	0.191
9	Q1	EPSON	FC-135R 32.7680KA-A0	CRYSTAL 32.7680KHZ 12.5PF SMD	-	DigiKey	FC-135R 32	1	0.7	0.7
10	R1, R2, R3, R4, R5, R6, R	YAGEO	RC0402JR-070RL	RES 0 OHM JUMPER 1/16W 0402	0402	DigiKey	RC0402_TR=0	17	0.0045	0.0765
11	R18	YAGEO	RC0402FR-0747KL	RES 47K OHM 1% 1/16W 0402	0402	DigiKey	RC0402FR-C	1	0.015	0.015
12	U2	Texas Instruments	MSP430FR5994IPN	IC MCU 16BIT 256KB FRAM 80LQFP	-	Mouser	MSP430FR59	1	11.27	11.27
13	Q2	DNP								
14	-	Würth Elektronik	60900213421	JUMPER W/TEST PNT 1X2PINS 2.54MM	-	DigiKey	6090021342	1	0.31	0.31
15	\$1,\$2	E-Switch	TL59NF160Q	SWITCH TACTILE SPST-NO 0.05A 12V	-	DigiKey	TL59NF160G	2	0.284	0.568
16	J2 (trying another comp	Samtec Inc.	SSW-110-23-G-D	CONN RCPT 20POS 0.1 GOLD PCB	-	DigiKey	SSW-110-23	0	5.71	0
17	-	-	-	PCB Fabrication	-	JLCPCB	-	1	4.96	4.96
								Total C	ost	27.2025

MSP Simplified PCB Total Cost (10 boards): \$31

Approximate Cost Per Board						
Breakout Board	~\$17					
MSP Simplified	~\$31					

Cost Per MSP Simplified Single Board Cost

IOWA STATE UNIVERSITY

Hardware Cost Estimates

Item #	Designator	Manufacturer	Mfg Part #	Description / Value	Package	Supplier	Link	Qty	Cost	Total Cost
1	U3,U5	Texas Instruments	CC1352R1F3RGZR	IC RF TXRX+MCU BLE 5.1 48VQFN		Digikey	https://www.d	2	7.2708	14.5416
2	Y1,Y3	EPSON	FC-135 32.7680KA-AG0	CRYSTAL 32.7680KHZ 7PF SMD		Digikey	https://www.d	2	0.505	1.01
3	Y2,Y4	Murata Electronics	XRCMD48M000F1P2AR	48.0MHZ CRYSTAL UNIT +/-10PPM IN		Digikey	https://www.d	2	0.787	1.574
4	C4,C25	KYOCERA AVX	04026C105KAT2A	CAP CER 1UF 6.3V X7R 0402	0402	Digikey	https://www.d	2	0.32	0.64
5	L2,L3	TDK Corporation	MLZ2012N6R8LT000	FIXED IND 6.8UH 550MA 250MOHM SM		Digikey	https://www.d	2	0.0876	0.1752
6	C15,C21,C29,C32,C2	Murata Electronics	GRM188R60J226MEA0E	CAP CER 22UF 6.3V X5R 0603	0603	Digikey	https://www.d	5	0.0608	0.304
7	C16,C17,C18,C19,C20,C22,C3,C31,C33,C27,C28,C30,C34,C26	KYOCERA AVX	KGM05AR51A104KH	CAP CER 0.1UF 10V X5R 0402	0402	Digikey	https://www.d	14	0.0062	0.0868
8	FB1,FB2	Murata Electronics	BLM18HE152SN1D	FERRITE BEAD 1.5K OHM 0603 1LN	0603	Digikey	https://www.d	2	0.124	0.248
9	R15,R1	Vishay Dale	CRCW0402100KJNED	RES SMD 100K OHM 5% 1/16W 0402	0402	Digikey	https://www.d	2	0.0152	0.0304
10	R9,R10,R11,R13,R2,R18,R19,R20,R21,R22,R23,R24	Vishay Dale	CRCW0402100RJNED	RES SMD 100 OHM 5% 1/16W 0402	0402	Digikey	https://www.d	12	0.0127	0.1524
11	U1, U4,	Johanson Technology In	0900PC15A0036001E	RF Balun 862MHz ~ 928MHz, 2.4GHz ~ 2	0805	Digikey	https://www.d	2	0.5568	1.1136
12	J8, J4	TE Connectivity Linx	CONSMA001-SMD-G-T	SMA Connector Receptacle, Female Soc	-	Digikey	https://www.d	2	3.15	6.3
13	13, 19	RF Solutions	CON-SMA-EDGE-S	SMA Connector Jack, Female Socket Boa	-	Digikey	https://www.d	2	2.2584	4.5168
14	\$1,\$2,\$3	C&K	PTS 647 SM50 SMTR2 LF	SWITCH TACTILE SPST-NO 0.05A 12V		Digikey	https://www.d	3	0.236	0.708
15	R3,R4,R5,R6,R7,R8	KOA Speer Electronics, I	RK73H1ETTP2400F	RES 240 OHM 1% 1/10W 0402	0402	Digikey	https://www.d	6	0.0134	0.0804
16	D1,D2,D3,D4,D5,D6	Harvatek Corporation	B1931USD-20D000814	LED RED DIFFUSED 0603 SMD	0603	Digikey	https://www.d	6	0.056	0.336
17	J2	JST Sales America Inc.	S2B-PH-K-S	Connector Header Through Hole, Right /	TH	Digikey	https://www.d	1	0.136	0.136
18	L1	TDK Corporation	MLZ2012N6R8LT000	6.8 µH Shielded Multilayer Inductor 550 mA 250mOhm 0805 (2012 Metric)	0805	Digikey	https://www.d	1	0.095	0.095
19	C1	Murata Electronics	GRM188R61A106ME69 D	10 μF ±20% 10V Ceramic Capacitor X5R 0603 (1608 Metric)	0603	Digikey	https://www.d	1	0.098	0.098
20	J1	Sullins Connector Soluti	PRPC003SAAN-RC	CONN HEADER VERT 3POS 2.54MM		Digikey	https://www.d	1	0.076	0.076
21	J7	DIKAVS	n/a	ment conn 2x7pin. Using breakaway pins	n/a	Amazon	B3XBYL3J/ref=	1	11.99	11.99
22	J5,J6	Samtec Inc.	FTSH-105-01-F-DV-P-TR	CONN HEADER SMD 10POS 1.27MM		Digikey	https://www.d	2	2.568	5.136
23	SW1	CTS Electrocomponents	219-8MST	SWITCH SLIDE DIP SPST 0.1A 20V		Digikey	https://www.d	1	0.911	0.911
	RF Test Plan Capacitors below:									
24	n/a, C9, C10, C8, C35	Kemet	CBR04C108B5GAC	0.1 pF ±0.1pF 50V Ceramic Capacitor C	0402	Digikey	https://www.d	4	0.0626	0.2504
30	n/a, C42, C23	Murata Electronics		12 pF ±5% 50V Ceramic Capacitor COG,		Digikey	https://www.d	2	0.06	0.12
31	n/a	Murata Electronics	GJM1555C1H180GB010	18 pF ±2% 50V Ceramic Capacitor COG,	0402	Digikey	https://www.d	2	0.12	0.24
								Total (`est	50.8696
								rotatt	JUST	30.6090

Sniffer PCB and Stencil Total Cost (15 boards): \$81

Approximate Cost Per Board						
Sniffer Board	~\$56					

Note for Self: add battery cost into this

Cost Per Sniffer Single Board Cost

Hardware Cost Estimates

	Total Senior Design Hardware Costs Drder # Order Description Cost					
1	Breakout Board PCB & Part Ord					
2	MSP REV 1 PCB & Part Order	203.8				
3	MSP REV 2 PCB & Part Order	30.8				
4	Sniffer REV 1 PCB & Part Order	611.88				
5	Battery Order	112.05				
6	Extra Component Order	29.29				
	Total Cost:	1025.65				

Stack Pinouts

SD)	Table 1						Table 2			
			1/O cm mean from the med							
Data Received	P5.0	DIO22	I	Powered ON	P7.7		DI025	DIO28		0
Transmit Request	P5.1	DIO3	0	Event Gen	P7.4		DIO26	DI029		I.
Transmit Done	P5.2	DIO24	I.	Testbed Reset	P7.5		DI027	DI030		I.
SPI Master	P5.3	DIO19	0	Easylick Tx		DIO25	DI024	DIO21		
Ready				Event drop	P7.6		DI09	DIO8		0
SPI Slave Ready	P5.4	DIO7	1	Reset	P7.3				Reset	I.
FRAM Written	P5.5	DIO11	0							
Power radio	PJ.4									
SPI MOSI	P6.4	DIO9		Note on	mantha in an		have and	les ana an	iffer for	
SPI MISO	P6.5	DIO8			rrently in ou nodes. I/O					
SPI CLK	P6.6	DIO10		maproo		Code need				
SPI SS	P6.7	DIO20	0							

Figure 12: Plan to Create Extra NC Pins on the CC1352R Development Board

IOWA STATE UNIVERSITY

Stack Pinouts

MSP Boar	d Pinout						
Pin #	Func	Pin #	Func	Pin #	Func	Pin #	Func
1	3V3 to CC	21	3V3	40	P5.4	20	GND
2	GPIO	22	GND	39	GPIO	19	P5.1
3	GPIO	23	NC	38	P6.7	18	P5.5
4	GPIO	24	GPIO	37	P3.5	17	GPIO/EN
5	P5.0	25	GPIO	36	GPIO	16	NC
6	P5.2	26	GPIO	35	GPIO	15	P6.4
7	P6.6 (SPI)	27	GPIO	34	RST_MSP	14	P6.5
8	P1.0	28	P7.3	33	P1.1	13	P1.6
9	P7.4	29	P7.5	32	P1.7	12	P2.6
10	P7.6	30	P7.7	31	P2.5	11	GPIO

Figure 14: MSP Simplified Pinout

Stack Pinouts

Harvester	Board P	inout					
Pin #	Func	Pin #	Func	Pin #	Func	Pin #	Func
1	NC	21	3V3	40	P5.4	20	GND
2		22	GND	39		19	P5.1
3		23	NC	38	P6.7	18	P5.5
4		24		37	P3.5	17	
5	P5.0	25		36		16	NC
6	P5.2	26		35		15	P6.4
7	P6.6	27		34		14	P6.5
8	P1.0	28	P7.3	33	P1.1	13	P1.6
9	P7.4	29	P7.5	32	P1.7	12	P2.6
10	P7.6	30	P7.7	31	P2.5	11	

Figure 15: Power Harvester Pinout

LIPO Cost Estimate (Slightly Outdated)

Item	Cost per Item	Quantity	Total Cost
LIPO	\$5.00	10	\$50.00
Battery Mount	\$3.00	10	\$30.00
Protection/Management ICs	\$0.50	10	\$5.00
Charger ICs and parts	\$1.00	10	\$10.00
Charger PCB	\$15.00	1	\$15.00

Costper board: \$11.00

Updated cost per board (no charging board): \$9.5

IOWA STATE UNIVERSITY

Time Skew Analysis

CC1352 clock was ran with constant time reporting, compared to real-time clock

Skew ended up > .005%, .01% between any given 2 nodes

Two nodes skewing in opposite directions: take 50 seconds to skew by 5 ms

Prototype Implementations - ????

No Transmit	Min	Max	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

Transmit every 5ms	Min	Мах	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

 $P_{avg} = 0.5(5.99) + 0.5(26.09) = 16.04 mW$

$$E_{wk} = P_{avg}(7)(24)(60)(60) = 9.701 kJ$$

p. 37-38

IOWA STATE UNIVERSITY

Prototype Implementations - ????

No Transmit	Min	Мах	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

 $capacity - needed = (0.5(I_{normal}) + 0.5(I_{trans,5ms}))(7)(24)$

capacity - needed = ((0.5)(1.8152) + (0.5)(7.9060))(7)(24) = 816.581mAh

Transmit every 5ms	Min	Мах	Mean
Power (mW)	4.6707	7.5945	5.9900
Current (mA)	1.4154	2.3014	1.8152

$$capacity-needed = (\frac{P_{avg}}{V_{supplied}})(7)(24) = \frac{2695}{V_{supplied}}mAh$$

+10% buffer

p. 37-38

IOWA STATE UNIVERSITY

References

[1] "CC13xx/CC26xx Hardware Configuration and PCB Design Considerations." Accessed: Dec. 04, 2023. [Online]. Available:

https://www.ti.com/lit/an/swra640g/swra640g.pdf?ts=1701669788758&ref_url=https%253A%252F%252Fwww.google.com%252F

[2] V. Deep et al., "Experimental Study of Lifecycle Management Protocols for Batteryless Intermittent Communication," 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 2021, pp. 355-363, doi: 10.1109/MASS52906.2021.00052.

[3] V. Deep, M. L. Wymore, D. Qiao and H. Duwe, "Toward a Shared Sense of Time for a Network of Batteryless, Intermittently-powered Nodes," 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 2022, pp. 138-146, doi: 10.1109/IPCCC55026.2022.9894317.

[4] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Computing. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '20). Association for Computing Machinery, New York, NY, USA, 53–67. https://doi.org/10.1145/3373376.3378464