# **Distributed Sniffer Nodes for Batteryless Sensor Nodes**

Ian Hollingworth | Matthew Crabb | Spencer Sutton | Tori Kittleson | Thomas Gaul

Group #: sdmay24-25

Advisor/Client: Dr. Henry Duwe

#### Introduction

- Dr. Duwe's research team conducts research on a network of batteryless sensor nodes called a BOB nodes
- BOB nodes have complicated communication cycles
- Our group created a testbed to configure and monitor multi-BOB note network

### **Users and Purposes**

- Users
  - Dr. Duwe and research team
  - Other universities and researchers
  - Open-Source community
- Purpose
  - Evaluate and debug protocols and system designs of sensor node networks through physical and wireless data

# **Design Approach**

- Two CC1352s in a Sniffer Node one to record data one to transmit it
  - Connected via SPI
- Monitoring of BOB on times, transmission times, and transmissions
   Network system that sends the data back to the Host



# **Design Requirements**

- Sniffer node powered continuously for one week
- Sniffer node has a negligible effect on BOB's lifetime
  Modular Stack of BOB and Sniffers
  Scalable for larger (100+) node setup
  Sniffer Node Software
  9 Sniffer, BOB node pairs
  Mechanically sound system for lab

- 2.4-GHz band used for Sniffer communication
- Sub-1-GHZ band used for BOB monitoring
- Battery pack to power the Sniffer Node and isolate it from other nodes



- Hardware Testing
- PCB testing post-fabrication
  CST Studio Suite antenna modeling
  System Tests used a "Faux BOB" we designed to emulate a BOB with a single CC1352 Emulates actual BOB operation
  Wireless Testing Using TI SmartRF Studio
  Compared performance to TI development boards (REF1, REF2)
  Measured RSSI (Received Signal Strength Indicator) results below

#### Components

- **Sniffer**: Monitor BOB node's activities
  - Primary CC1352: Collect data
  - Relay CC1352: Pass data down
     Sniffer network to the Host
- CC1352 Radio: BOB communication
- Simplified MSP-430: BOB computation – simplified by our team to total costs of node production
- **Power Board:** Harvest RF energy
- Mounting Plate: Mount BOB, Sniffer stack to the ceiling of the lab





CST Studio Suite Model of 2.4GHz PCB Antenna



2.4GHz PCB Antenna S-Parameters from Simulation

| Sub-1GHz Wireless Testing                                                                                                      |                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| DUT                                                                                                                            | RSSI (dBm)                                              |  |
| $REF1 \rightarrow REF2$                                                                                                        | -31.9                                                   |  |
| $REF1 \leftarrow REF2$                                                                                                         | -39.8                                                   |  |
| Sniffer (1) $\rightarrow$ REF2                                                                                                 | -80.2                                                   |  |
| Sniffer (1) $\leftarrow$ REF2                                                                                                  | -80.8                                                   |  |
| Sniffer (2) $\rightarrow$ REF2                                                                                                 | -39.2                                                   |  |
| Spiffor (2) $\angle$ DEE2                                                                                                      | 22 /                                                    |  |
|                                                                                                                                | -55.4                                                   |  |
| 2.4GHz Wireless Te                                                                                                             | -55.4                                                   |  |
| 2.4GHz Wireless Te<br>DUT                                                                                                      | sting<br>RSSI (dBm)                                     |  |
| Out       2.4GHz Wireless Te       DUT       REF1 → REF2                                                                       | -53.4<br>sting<br>RSSI (dBm)<br>-52.7                   |  |
| <b>2.4GHz Wireless Te</b><br><b>DUT</b><br>REF1 $\rightarrow$ REF2<br>REF1 $\leftarrow$ REF2                                   | -53.4<br>sting<br>RSSI (dBm)<br>-52.7<br>-53.7          |  |
| <b>2.4GHz Wireless Te</b><br><b>DUT</b><br>REF1 $\rightarrow$ REF2<br>REF1 $\leftarrow$ REF2<br>Sniffer (1) $\rightarrow$ REF2 | -53.4<br>sting<br>RSSI (dBm)<br>-52.7<br>-53.7<br>-53.1 |  |

#### **Tools and Standards**

| • | Python       | • | TI Code  |
|---|--------------|---|----------|
| • | SPI          |   | Composer |
| • | UART         |   | Studio   |
| • | CST Studio   | • | Autodesk |
|   | Suite        |   | Inventor |
| • | Keysight ADS | • | EasyLink |
| • | С            | • | KiCAD    |

| Senior Design Cost B | enior Design Cost Breakdown (\$) |  |  |
|----------------------|----------------------------------|--|--|
| Breakout Board       | \$37.83                          |  |  |
| Simplified MSP-430   | \$234.60                         |  |  |
| Sniffer Board        | \$611.88                         |  |  |
| Batteries            | \$112.05                         |  |  |
| Extra Parts          | \$29.29                          |  |  |
| Mechanical Design    | \$34.60                          |  |  |
| Total                | \$1060.25                        |  |  |