
IOWA STATE UNIVERSITY

COMPUTER AND ELECTRICAL ENGINEERING DEPARTMENT

CPRE EE 491 TEAM 25

DISTRIBUTED SNIFFER NODES FOR BATTERYLESS SENSOR

NODES
DESIGN DOCUMENT

December 7, 2023

Client/Advisor- Henry Duwe

Team/Software Lead- Thomas Gaul

Scribe/Software member- Ian Hollingworth

Software member- Spencer Sutton

Hardware Lead- Tori Kittleson

Hardware member- Matthew Crabb

sdmay24-25@iastate.edu

https://sdmay24-25.sd.ece.iastate.edu

1

2

Executive Summary

Problem Statement

We aim to create an open-source testbench for testing and benchmarking wireless batteryless

sensor nodes that have been designed by our clients. This test bench needs to be made of

modular units to allow test scalability. The units must interface with the wireless nodes to

collect, record, and store information about their operation and performance.

Development Standards & Practices Used

C: Microcontroller code written in standard C with standard coding practices such as com-

menting and library use

Python: Host computer programming written in standard C with standard coding practices

UART: Standard UART serial communication between Sync Node and Host Computer allows

seamless integration to any computer (RS-232)

SPI: Communication between the various portions of the BOB Node

KiCad: Standard open-source CAD software for designing PCBs

GitLab: Industry standard version control software

TIRTOS: Texas Instruments provided a Real-Time Operating System used to handle tasks and

threading within code Low Energy Bluetooth Bluetooth 5.2 Low Energy (IEEE 802.15.1)

Hardware Design: Consistent with TI product line

Summary of Requirements

Modularity: Start with 9 nodes, ability to scale to 1000

Simulation: Sniffers must be able to provide faux sensor data to BOB Nodes for testing

3

Low Cost: Roughly $20 per board

Electrical Isolation: Connecting Sniffer to BOB node causes no measurable change in BOB

behavior

Open Source: Build to be well-documented, reproducible, and expandable for future groups

to use and build upon

Applicable Courses from Iowa State University Curriculum

EE 201/230: Circuits I / II

EE 285: Intro to C

EE 330: Intro to VLSI

EE 465: Digital VLSI

EE 333: PCB design

EE 224/324: Signals and Systems I / II

EE 321: Communication Systems I

CPRE/EE 185: Intro to EE/CPRE

CPRE 281/288: Digital Logic & Embedded Systems

CPRE 381: Computer Structure and Assembly

CPRE 558: Real Time Systems

New Skills/Knowledge acquired that was not taught in courses

Technological Skills

• PCB design

4

• Soldering

• Wireless Transmission Protocols

• Python

• KiCad

• System-level Debug

Soft Skills

• Team Management

• Team Communication

• Client Negotiation

• Meeting management

Contents

1 Team . 8

1.1 Team Members . 8

1.2 Required Skill Sets for Your Project . 8

1.3 Skill Sets covered by the Team . 8

1.4 Project Management Style Adopted by the team 8

1.5 Initial Project Management Roles . 9

2 Introduction . 9

2.1 Problem Statement . 9

2.2 Requirements & Constraints . 9

2.2.1 Requirements . 9

2.2.2 Constraints . 10

2.3 Engineering Standards . 11

2.4 Intended Users and Uses . 11

3 Project Plan . 12

3.1 TASK DECOMPOSITION . 12

3.2 Project Management/Tracking Procedures . 14

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 15

3.4 Project Timeline/Schedule . 15

3.5 Risks and Risk Management/Mitigation . 17

3.6 Personnel Effort Requirements . 18

3.7 Other Resource Requirements . 18

4 Design . 19

4.1 Design Content . 19

4.2 Design Complexity . 20

4.3 Modern Engineering Tools . 21

4.4 Design Context . 22

4.5 Prior Work/Solutions . 24

4.6 Design Decisions . 25

4.7 Design 0 (Initial Design) . 25

4.7.1 Design Visual and Description . 25

4.7.2 Functionality . 26

4.8 Design 1 (Design Iteration) . 26

5

6

4.8.1 Design Visual and Description . 26

4.8.2 Functionality . 28

4.8.3 Design of Pinouts for the Stack . 32

4.8.4 Breakout Board Design . 35

4.8.5 MSP Simplified Design . 35

4.9 Technology Considerations . 42

4.9.1 Two band-pass off . 42

4.9.2 Internet Enabled Sniffer Node . 42

4.9.3 Two CC1352 Design . 43

4.9.4 Both bands running on the CC1352 Simultaneously 43

4.9.5 Single band channel filtering . 43

4.10 Design Analysis . 43

5 Testing . 44

5.1 Unit Testing . 44

5.1.1 Software . 44

5.1.2 Hardware . 47

5.2 Interface Testing . 53

5.2.1 Software . 53

5.2.2 Hardware: . 54

5.3 Integration Testing . 55

5.3.1 Software . 55

5.3.2 Hardware . 55

5.3.3 Sub-System . 56

5.4 System Testing . 57

5.5 Regression Testing . 57

5.6 Acceptance Testing . 57

5.7 Results . 58

6 Implementation . 58

6.1 Hardware . 59

6.2 Software . 59

7 Professionalism . 61

7.1 Areas of Responsibility . 61

7.2 Project Specific Professional Responsibility Areas 62

7

7.3 Most Applicable Professional Responsibility Area 63

8 Closing Material . 63

8.1 Discussion . 63

8.2 Conclusion . 63

9 Appendices . 66

9.1 Breakout Board Design Files . 66

9.2 Simplified MSP-430 Board . 72

9.3 Team Contract . 80

8

1 TEAM

1.1 Team Members

Matthew Crabb, Thomas Gaul, Ian Hollingworth, Tori Kittleson, Spencer Sutton

1.2 Required Skill Sets for Your Project

Embedded Systems

PCB Design

Electrical Systems

Radio Communication Protocol

Soldering

Debugging

1.3 Skill Sets covered by the Team

Embedded Systems- All members

PCB Design- Matt, Tori, Ian, Thomas

Electrical Systems- Thomas, Matt, Tori

Soldering- All members

1.4 Project Management Style Adopted by the team

We have committed to an agile management style with goals for each week which will be

assigned to each team member. Daily scrum meetings will be in the form of consistently

9

messaging and two to three meetings a week. We will use GitLab to for gooals and milestones.

1.5 Initial Project Management Roles

Thomas- Team lead, Technical Software

Matt- Technical hardware

Tori- Hardware lead, Technical hardware

Ian- Scribe, Technical software

Spencer- Technical software

2 INTRODUCTION

2.1 Problem Statement

We aim to create an open-source testbench for testing and benchmarking wireless batteryless

sensor nodes that have been designed by our clients. This testbench needs to be made of

modular units to allow test scalability. The units must interface with the wireless nodes to

collect, record, and store information about their operation and performance.

2.2 Requirements & Constraints

2.2.1 Requirements

• Provide scalability in design in Sniffer code and communication and hardware for BOB

and Sniffer (1 Sniffer per BOB). Goal: 9 nodes, 1000 nodes design analysis.

• Mechanical durability of BOB and Sniffer interface and stand-alone unit for testing use.

• Implement a system that is easy to move for testing.

10

• Set pin requirements that map to each other.

• Implement hardware for wireless mass reprogramming of BOB.

• Provide thorough documentation on the project.

• Include make file for all project documents.

• MSP430 should have a power switch for the CC1352 so that it is not always on. Need to

prototype this and ensure it meets the electrical characteristics/requirements.

• Do not have a modification of BOB code for Sniffer implementation.

• Sniffers communicate with each other to pass log data from BOBs to the Host and

compare data from BOB.

• Have a Host system that organizes and stores logs from Sniffers.

• Sniffers record both wireless data and wired. Wired can optionally be disconnected.

2.2.2 Constraints

• Use CC1352 microcontrollers in our Sniffer design

• Our Sniffer network must record all transmission from BOBs at a maximum rate of 1

8-byte message every 5ms.

• Sniffers only cause trivial effects on BOB’s performance (Sniffers are electrically isolated

from each other and have minimal effect on BOB up time).

• Have 9 Sniffer/BOB pairs fully constructed by the end of the year.

• Central Sniffer Node that cannot lose power and collects data from other Sniffer nodes.

The central Sniffer Node can be (statically) selected from any Sniffer Node.

• Sniffer to Sniffer communication does not interfere with BOB communication.

• 20 Dollars or less per Sniffer node.

• Wireless Sniffer Nodes must have the ability to operate continuously for a week.

11

2.3 Engineering Standards

Software

• UART communication protocol: Standard way for microcontrollers to communicate

with PC’s, will be used to connect our Sink node to our Host PC. RS232

• Radio communication standards such as , Bluetooth 5.2 Low Energy (IEEE 802.15.1),

RS-232, Proprietary 2.4 GHz

• We need these communication standards to communicate between multiple sniffer

nodes sending data back to the Host

Hardware

• Standard pin header for connecting between boards

• Revision numbers

• Version control for PCB design

• Standard circuit schematic design

• Effective organization of component library

2.4 Intended Users and Uses

Our clients are Professor Duwe and his graduate assistants, with secondary users being other

researchers who might want to use our testing infrastructure for their own work.

Our clients will be using this testbench to test their sensor nodes and write research papers

about them, so they need it to be as versatile as possible.

Our design and software will all be open-source for other researchers and designers. They may

build upon and expand our designs, so it will all need to be as modular and well-documented

as possible.

12

3 PROJECT PLAN

3.1 TASK DECOMPOSITION

BOB Development

1. Determine specifications with the client.

2. Plan header configurations and rough board sizing.

3. Develop a BOB hardware design.

4. Develop BOB schematic.

5. Design Review with the client.

6. Develop BOB layout.

7. DRC checks.

8. Peer review for errors.

9. Generate design gerber files.

10. Attain quotes and order boards.

11. Generate BOM and order parts.

12. Document design and function of BOB hardware.

13. Generate schematic and board layout documents.

14. Add documents to the design doc.

15. Populate Boards.

16. Hand solder.

17. Clean boards.

18. Visual inspection.

19. Testing functionality of BOB hardware.

20. Power supply test – look for short circuits.

21. Plan functional tests.

22. Perform functional tests.

23. Integrate into the current system.

24. Deliver to the client.

13

Sniffer Hardware Development

1. Determine specifications with the client.

2. Determine system needs and specifications.

3. Wireless needs.

4. Headers and pinouts.

5. Power system.

6. Processor and processor interface.

7. Programming interface.

8. Board size.

9. Develop Sniffer schematic.

10. Plan header configurations and rough board sizing.

11. Design subcircuits (novel and from reference) - find parts.

12. Outline schematics in KiCad and format.

13. Design Review with the client.

14. Develop Sniffer layout.

15. Component placement and routing.

16. DRC checks.

17. Peer review for errors.

18. Generate design files.

19. Attain quotes and order boards.

20. Generate BOM and order parts.

21. Order stencils.

22. Document design and function of Sniffer hardware.

23. Generate schematic and board layout documents.

24. Add documents to the design doc.

25. Test functionality of Sniffer Hardware.

26. Power supply test – look for short circuits.

27. Plan functional tests.

28. Perform functional tests.

29. Deliver to the software team for testing.

30. Program boards.

31. Perform testing and development tasks.

32. Deliver boards to the client.

14

Physical Interfacing

1. Physical interfacing between BOB, Sniffer, and testing environment.

2. Design the custom MSP430 board that physically connects to both the CC1352 and the

power board.

Sniffer Firmware Development

1. Develop Sniffer firmware.

2. Develop a communication system between Sniffers.

3. Research and decide on a communication protocol.

4. Establish a connection between Sniffers.

5. Successfully sniff with our own firmware.

6. Sniffers accurately monitor BOBs performance.

3.2 Project Management/Tracking Procedures

Waterfall and Agile Approach:

We are looking at semester scheduling in terms of the waterfall approach. These will be our

rough deadlines for the semester. For example, what this would look like for hardware is:

design planning, schematic, layout, physical hardware testing, and system integration. This

will follow a linear approach for each subteam: electrical and hardware.

Similarly, the team is going to be working simultaneously on various aspects of the project as

the semester goes on. This is to make use of all our resources throughout the duration of the

semester. Deadlines will also be more agile and adjusted as the client’s needs change. For

example, both electrical and software project planning and work will occur in parallel.

Our group is using GitLab issues for weekly progress and keeping version control with our

project files throughout the semester. Teams will be used for group communications and

clarifications. For semester planning, we will use the schedule found below.

15

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

The following are the key milestones in our project:

• Simplified BOB schematic design review

• Simplified BOB PCB layout design review

• Simplified BOB PCB ordered

• Sniffer schematic design review

• Sniffer PCB layout design review

• Sniffer PCB ordered

• Testing of all BOB hardware features completed

• Testing of all Sniffer hardware features completed

• Establish successful communication between two CC1352 development boards

• Successfully listen (sniff) a test actively with a CC1352 development board

• Successfully pass Sniffer data to the Sink Node

• Successfully record data from the Sink Node to the Host Node

• Establish communication between a network of Sniffer Nodes

• Scale the design to achive 10 Sniffer Nodes accurately communicating with each other

3.4 Project Timeline/Schedule

Our team early on planned out the project early to allow for the completion of the goals.

16

Figure 1: The schedule we followed during CPRE/EE 491

Figure 2: Intended Schedule for CPRE/EE 492

17

3.5 Risks and Risk Management/Mitigation

Risk Mitigation Risk Factor Mitigation Strategy

Hardware order

delayed

0.2 Leave time in schedule

Component order

delayed

0.1 Order components closely after PCBs are or-

dered

BOB PCB testing fails 0.2 Leave time for a second PCB revision

Eval board destruction 0.2 Proceed with caution with the eval boards

Incorrect layout delays

software programming

0.1 Leave time for a second PCB revision

Damage to physical

PCB

0.3 Order extra PCBs to use as backups

Poor BOB soldering 0.3 Have experienced members soldering and

teaching solder basics

Unable to establish

communication while

also listening to BOB

communication

0.6 Start early to ensure enough time to develop

alternate. Fallback plan is to have the different

Sniffers cover for each other complicating the

firmware. Alternatively, we can add more mi-

crocontrollers

Table 1: Risk and Risk Mitigation

18

3.6 Personnel Effort Requirements

Tasks Hours

Develop a BOB hardware design 10

Develop BOB layout 8

Document design and function of BOB hardware 10

Populate BOB boards 8

Testing functionality of BOB hardware 8

Integrate into the current system 8

Develop Sniffer hardware design 25

Develop Sniffer schematic 6

Develop Sniffer layout 15

Document design and function of Sniffer hardware 10

Populate Sniffer Hardware 20

Test functionality of Sniffer Hardware 8

Deliver to software team for testing 1

Deliver boards to the client 1

Physical interfacing between BOB, Sniffer, and testing en-

vironment

6

Have a CC1352 listen (sniff) an actively running test 4

Get two CC1352s to communicate 5

Develop Sniffer firmware 35

Test Sniffer firmware 10

Develop a communication system between Sniffers 10

Table 2: Personnel-Effort Requirements

3.7 Other Resource Requirements

• Time with Mentor and Clients

• Soldering Equipment Access

• Code Composer Studio

• KiCAD

19

• Coffee

4 DESIGN

4.1 Design Content

The design content can be split into four main components: Sniffer design, Host design, BOB

updates, and system integration.

The main task of this project is to design a set of Sniffer Nodes, which will provide a testbed

for the BOB Nodes by accurately recording data on BOB operation and by emulating an

environment in which the sensor resides. Both hardware and software systems must be

designed and integrated for the Sniffer Nodes.

The Sniffer hardware tasks consist of designing a PCB that contains an MCU, a wireless

communication interface and an antenna, headers to connect to other boards, and a power

supply system. The wireless communication system will be designed to pick up BOB com-

munications. The headers must be carefully designed to provide all necessary monitoring

without interfering with the BOB operation. The power system contains design decisions on

how to power the Sniffer with a battery as well as how the power supply can be switched to a

continuous power supply.

The Sniffer software will contain design decisions mainly regarding communication protocols

and data aggregation and sorting. The Sniffer software will be configured to work on the

MCU. The Sniffer will have to be designed to communicate with 3+ MCUs from other boards

simultaneously which will require intensive software design. The Sniffers will also have

to move data to the Host Node in some fashion. This will require large amounts of data

to be sorted and transferred in an efficient manner. This will also present difficult design

challenges.

The testbed also requires a Host Node. The Host Node will have a hardware system that it

operates on and software that collects and stores data in a form that is easy for researchers to

access and manipulate. Design decisions must be made on what hardware system to use and

how it will communicate with and receive data from the Sniffers. A software system will also

20

need to be designed which provides accurate, easy to access data.

In addition to designing the testbed, Dr. Duwe’s research group has asked us to simplify their

current BOB design and add some new functionality to it. This task includes making design

decisions on how best to simplify the board as well as designing new circuitry.

All systems mentioned above will need to be designed in such a way that they work together

functionally as a whole. The hardware requires designs that can interface with each other and

easily be connected. The software will require communication protocols which work with

one another. The Sniffers and the BOB nodes will need to communicate but also maintain

electrical isolation from each other. This leads to a situation where every design decision for

each part also affects the whole and must be carefully considered.

Lastly, the systems must also mechanically interface with each other and be able to be easily

set up for tests. Dr. Duwe’s group is hoping to hang each BOB Node and Sniffer pair from

the ceiling together. This will require design on the hardware side as well as the design of

mechanical hangers.

Overall, this project contains a vast and varied amount of design content.

4.2 Design Complexity

Our project has a variety of aspects contributing to making it a complicated and challenging

project for the capstone course.

To meet the requirements for Senior Design, our project must be complex. There are two

main criteria which determine complexity. The first criterion asks if the design has multiple

elements that each require different scientific, mathematical, and engineering principles.

The second criterion asks if the design task requires solving challenging problems which have

not been solved, or have not had industry standard solutions adopted yet.

Our project satisfies the first criterion but does not address problems modern enough to

meet the second criterion. Our project requires the design of multiple subsystems which

must work together. The main subsystems we will design are:

1. A Sniffer Node PCB

21

2. A simplified BOB Node PCB

3. A common header pinout which allows all PCBs (4 total) to be stacked and to commu-

nicate without interfering with each others operation

4. Software for the Host Node to recieve and organize data

5. A mechanical mounting system to hold all 4 boards together and hang them from the

ceiling

6. Software for the Sniffer Nodes to listen and send communications

7. A communication scheme to route all packets from multiple Sniffer Nodes to the Host

Node

Designing these subsystems will require the use of a number of mathematical and engi-

neering principles. The hardware design for the Sniffer Node and simplified BOB node

require schematic design and capture, calculations to determine system needs accurately,

soldering, RF PCB layout, reverse engineering of provided reference designs, usage of test

equipment, and hardware debugging. Designing the software for the Sniffer Nodes requires

C programming, Python scripting, usage of multiple different communication protocols,

coding using operating systems, writing software tests, and debugging software. Designing

the communication scheme requires using math to plan out the order of events and usage

of communication protocols. Designing the mechanical mounting system will require 3D

modeling, usage of workshop tools for fabrication, and potentially 3D printing.

The project contains much complexity in the number of subsystems to design and the various

engineering skills required to design each subsystem. Not directly relating to the criteria, there

will also be a vast amount of complexity in implementing ten Sniffer Nodes and a Host Node

which all seamlessly work together. This will require careful planning, time management,

and debugging skills.

4.3 Modern Engineering Tools

We will require a handful of engineering tools to accomplish our goals and project

22

Code Composer Studio(CCS)- We use CCS to code and program in C for all the micro-

controllers within our project.

Visual Studio Code (VS Code)- We use VS Code Python to write and run the program for

collecting and compiling the data from tests.

KiCad- KiCad is used for all aspects of our PCB design. It is used for creating schematics and

footprints in our parts library and the design schematic and layout for our PCBs (Printed

Circuit Board)

AutoDesk Inventor- We will use Inventor (or similar CAD software) to model any of the

physical components required by our project.

GitLab- We use GitLab for doing version control and project management tools

4.4 Design Context

Our project is used in the context of research by our clients, who are part of a research team

led by Professor Duwe. One of our constraints is to make all aspects of our design available

as open source. With open source, other batteryless sensor enthusiasts may choose to use

or update our testbed design to fit with their own project needs. This research project is

designed to be able to develop systems that could be applied in a wide variety of fields such

as manufacturing, farming, infrastructure, and more.

Given the broad scope of this project, it creates a lot of unique constraints and requirements.

We must make our design flexible to fit a wide variety of testing environments, particularly

with system communication. Along with this comes documentation, and we would like to

document our work clear and concisely so that someone with limited experience in this field

can quickly comprehend and implement the work themselves.

23

Area Description Example

Public Health,

Safety, and

Welfare

During the testing process, radio signals will

be sent between various MCUs on both BOB

and Sniffer nodes.

We will work to avoid interfer-

ence with other people’s devices

during the testing process.

Global

Cultural and

Social

A BOB network can be used in professional

and workplace settings to increase overall work

efficiency.

In workplaces where collecting

sensor data is important, a BOB

network will automate the pro-

cess, saving time for people in

the workplace.

Environmental The goal beyond the senior design project is to

create a functional general-purpose network

of tens to thousands of sensor nodes that can

be used in a variety of situations. These situa-

tions could include cases where BOB nodes are

distributed throughout a natural environment.

It will be important to dispose

of BOB nodes in an environ-

mentally friendly way after they

are no longer of use, especially

in the case where hundreds to

thousands of nodes may be scat-

tered in varying environments.

Economic After the testing is complete and BOB nodes

are distributed on a large scale in a practical

setting, the BOB nodes can be used to reduce

the cost of monitoring processes for the user.

For example, a network of BOB nodes could be

distributed around a factory to monitor tem-

perature, pressure, or other relevant informa-

tion to identify if everything is running accord-

ingly.

The data from the BOB network

could help improve factory cost

efficiency or could be used as

a safety mechanism to turn off

certain processes if things go

wrong. In any case, increased

monitoring capabilities in many

cases will reduce the burden of

cost on the BOB network user.

Table 3: Project Context

24

4.5 Prior Work/Solutions

Figure 3: The current setup design the Research Assistants use

Figure 3 shows a testing setup used as a prior solution by the research team to run tests on

two BOB nodes with a single Sniffer. This test works and is currently being used but we have

been tasked with expanding it. Our goal is to create a setup that has each Sniffer paired with

a single BOB as opposed to the current system. Additionally, we want all the communication

back to the Sink node to be conducted wirelessly. The other goal is to make the wiring cleaner

and completely remove the need for jumper wires. Additionally, we will be making the stack

of boards more robust mechanically, resolving that challenging aspect of debugging.

Figure 4: The current setup the Research Assistants use

25

4.6 Design Decisions

We decided to do communication between the Sniffer nodes with the CC1352 radio and not

with an ESP8266 because of power constraints.

BOB communication will take place on a sub-1Ghz band with a custom communication pro-

tocol developed by the research team. The Sniffer communication will use 2.4Ghz Bluetooth

communication.

We decided to use a load switch to control power between the MSP430 and the CC1352 BOB.

We decided that the boards would be stacked from bottom to top as Powerboard, MSP-

430(simplified), CC1352(radio board), and Sniffer.

4.7 Design 0 (Initial Design)

Figure 5: The initial idea we had with ESPs

4.7.1 Design Visual and Description

Our initial plan was to include an ESP8266 on the Sniffer Nodes that would connect to the

ISU Wi-Fi network or a router. It would be used to communicate all test logs back to the Host

26

and would allow us to not worry about range too much and always be able to have Sniffer

nodes listening and logging data. This design was intended to be very modular, meaning

that more nodes should easily be added to the system. Adding more nodes would be very

straightforward; all aspects would be wireless, maintaining a clean setup. The data logging

would be on a different band than the BOBs, so no interference would be created.

4.7.2 Functionality

This initial and since scrapped design, would function much like the research team’s current

design. The Sniffers would listen to wired and wireless communication from the BOB simulta-

neously, as well as have the functionality to create tests on the BOB boards using faux sensor

data. The main difference is that instead of communicating to and from the Host wired via

UART, the Sniffers would communicate using an ESP8266 to relay data back to the Host using

the internet. This design would likely fill all requirements but harbored a concern of requiring

too much power to reasonably be powered off a battery for a week or more. Additionally,

our advisor thought adding another microcontroller and the communication work required

would add too much complexity for this stage of the project.

4.8 Design 1 (Design Iteration)

4.8.1 Design Visual and Description

Our current iteration involves having the Sniffer nodes harvest all their data independently,

then passing them through a predetermined route of Sniffers until the data ultimately reaches

a Sink node. This Sink node would be the “test Host” of all Sniffers. We are unsure if we can

use two communication bands simultaneously on the CC1352, or if we will have to create a

strategic switching protocol to allow the board to both listen and communicate effectively.

However, if we achieve it, the data will reach the Sink node and be communicated to the Host

via UART for data logging and processing. Conversely, to set up tests, the Host communicates

the setup to the Sink Sniffer via UART, and the Sink node will create a ripple distribution

throughout the network until every board has received the setup and implemented it.

We took this design as it was suggested by our advisor, and it will require less power than

design 0.

27

Figure 6: Our current design plan

Figure 7: Our current hardware stackup plan

The above diagram gives a model for what our PCB stack up will look like.

28

The current design involves a 4-board stack. The bottom most board is the power harvester

board. This will harvest the RF energy and supply power to the entirety of the stack. The

current power harvester board is an off the shelf evaluation board. One of Dr. Duwe’s graduate

students, Vishak, will be designing an in-house board to replace the current revision. This

will allow for more flexibility with the connector stack-up, as far as modification of connector

pinout goes.

The next board in the stack is the MSP430. This board is currently an evaluation board and

is being simplified down by our senior design team to condense the design and keep only

the used functionality of the board. This is included as part of the BOB Node. This board is

placed between the MSP430 and the CC1352 as both boards will contain radios and there are

concerns of interference between the two. The two radios that connect via SMA connector

will be placed on opposite sides of the board stack to account for this.

The CC1352 or “radio board” is used for communications both between each node and to the

Host, through the Sniffer testing board.

The topmost board is the Sniffer board which is the primary focus of our senior design

project. The Sniffer will be probing into the main connector of the node and evaluating

the performance of the BOB Node. The Sniffer will only be used for initial prototyping and

implementation. When the product is distributed and functioning beyond these steps, the

Sniffer board will not be included in the unit. This is why the board is placed at the top of the

stack as it can easily be removed once the unit is ready to be used.

4.8.2 Functionality

One of our main considerations for our current proposed solution is deciding how to allow

each of the nodes to switch between the BOB and Sniffer communication bands without

losing any information. The idea we landed on was having everything time synced relative to

the Sink node, then having half of the nodes on each band at a time swapping off at regular

intervals. We will have to have overlap where everything is on the BOB band for a short time

so as to not miss any packets. A rough timing diagram of this system is shown in Figure 8.

29

Figure 8: Our two-band pass-off

It can be seen that half of the Sniffers are listening back to the BOB nodes, while the other

half are talking and listening to the other Sniffer nodes. This would happen according to the

schedule shown at the bottom the image. The diagrams on the right side of the image are an

example of how dataflow would work between the nodes over time.

Another important aspect of this band pass-off we decided upon is that in order to make it

work without losing packets from the BOBs during pass-off time, we need to make sure that

adjacent nodes don’t end up on the Sniffer band at the same time. To this end, we decided

upon a checkerboard pattern of band swapping, where each Sniffer has a specific data-path

back to the Sink node. This simplifies the problem of switching bands, as we will always

know which node is on what band based on the checkerboard we design, as everything will

be reasonably synced to the Host node’s time, as discussed. A diagram of this checkerboard

pattern can be seen in Figure 9.

30

Figure 9: Checkerboard Band Swap

To ensure that we can maintain the band switching algorithm with the rates of transmission,

band switching, saving, and loading to the queue under worse case load of one 8-byte

transmission every 5ms, we ran some timing tests.

With some prototype testing, we found that we can send a 128-byte (maximum size) packet

in 12ms, we can switch between bands (from BOB to Sink, and from Sink to BOB) in about 30

ms, and finally, can create an array-based queue of 2500 10 byte packets. In this queue, we

can read or write the entire or it in under 15 ms.

With this data, we can generate a simple table (table 10 to show that we can maintain a

band-switching procedure that can save all data while listening to the BOBs in the BOB band

and transmit all the data back to the Sink while in the Sink band while being able to maintain

the overhead of the band switching time while with the constraint of queue size. In this

diagram, we are taking delays incurred by the queue as negligible and giving a 5 ms buffer

to handle variation in Band Switching time. In actual implementation, we will have it run

for longer on each band to make further use of our array of 2500 data packets and if we can

make use of a maximum packet size we can transfer 128 bytes in on-go at the fastest rate.

Figure 10: Example Timing Schedule

Another main consideration of the Sniffer Node design is how it will be powered. The re-

quirements for the power system is that it is easy to use, can power the Sniffer for up to 7

31

days continuously, and that the Sniffer node can optionally be powered by a wire to ensure

that it does not fail. To meet these requirements, our design is to use a battery system to

power the Sniffer and to also provide a wired power connection. When using the wired power

connection, the system will either automatically switch over to the wired power option, or a

switch will be available for the user to toggle between power modes.

There are a number of considerations to take into account for the design of the battery system.

The first is the power, voltage, and current needs of the Sniffer board. The main element

on the niffer board is the CC1352R processor. According to the datasheet, the CC1352R

has its own internal regulators. This negates the need for a regulator on the chip. The

CC1352R requires a supply voltage between 1.8 – 3.8V. According to measurements made in

the datasheet, the maximum operating current of the chip is about 25mA. Our requirement

will be that the battery system can supply 35mA to give plenty of margin. The battery system

must meet all CC1352R power needs and have the capacity necessary to run the Sniffer for 7

days continuously (this requirement is estimated below).

The second consideration is cost of the system. One of the Sniffer Node requirements is to

have a low cost. The client desires that the cost is low to enable more nodes to be tested

on limited research funds and so that other groups can cost-effectively begin using our

test system. The cost of the system includes batteries, ICs required to run them, mounting

solutions, and potentially recharging systems. The goal is to reduce the cost per Sniffer. The

cost also includes the cost of future use (for example if batteries must be replaced).

The third consideration is ease of use and practicality. The system should be easy for the

graduate students to set up and use. For example, the system would not be easy to use if the

batteries were difficult to put in and take out or if the batteries took an inordinate amount of

time to charge.

The fourth consideration is sustainability. Disposal of batteries can have negative environ-

mental effects. If possible, the environmental impact of our design should be minimized.

The next sections cover an estimation of the worst-case battery capacity requirement and

several of the design ideas we generated. These will be reviewed with the client to determine

the most optimal design.

32

4.8.3 Design of Pinouts for the Stack

The PCBs must connect in a simple, mechanically sound way. Mechanically sound means

that they all stay together and that the connections between them are secure. The solution

chosen to complete this task is to put all the PCBs together in one stack connected by identical

headers. All TI development boards use an identically spaced header with a standardized

pinout. This is shown for the CC135R development board below.

Figure 11: TI CC1352R Development Board Quick Start Guide [1]

The plan is to use the friction of the header connections to hold the stack together. However,

this will likely be supplemented by additional mechanical support such as non-conducting

bolts through mounting holes in the boards or a 3d printed frame.

To enable this solution, the pinout must be carefully designed to ensure the pins of all four

PCBs are properly connected. The middle boards must also have a small footprint due to

the antennas and capacitors sticking up or down from the radio board, Sniffer board, and

harvester board. This is one of the main motivations for designing a new MSP430 board.

Additionally, the Sniffer pinout and Harvester pinout needed to be made compatible with the

stack. The research team gave us the details of all connections needed and we designed the

pinouts for all boards.

33

The pinout design centered around the existing pinout of the CC1352R development board

because it cannot be altered. There are a number of connections that must be made between

only the MSP430 board, Harvester board, and Sniffer board and not the CC1352R board. To

make these connections, the no connect pins on the CC1352R were used. However, there

were not enough to meet the requirements. To address this problem, fourteen pin headers

will be used as offsets to the CC1352R development board. This creates more no connects

which allows the pinouts to meet the requirements as shown below.

Figure 12: Plan to Create Extra NC Pins on the CC1352R Development Board

The pin connection requirements provided by the research team are shown in the following

figure.

34

Figure 13: Pinout Requirements Provided by Research Team

The final pinouts settled on for the harvester board and the MSP430 Simplified board are

shown below. The extra pins that did not have specific functionality are connected to GPIO

pins on the MSP430, Simplified with jumper resistors in between. This will allow the research

team to use these pins in the future for any functionality that may be desired. This effectively

makes the whole stack much more configurable, enabling easier development.

The Sniffer pinout has not been fully completed yet, as the Host to Sink communication is

still being determined.

Figure 14: MSP Simplified Pinout

35

Figure 15: Power Harvester Pinout

4.8.4 Breakout Board Design

The Breakout Board 18 was designed to test out some of the modifications that we would be

making to the MSP Simplified board. This way we could order and test the Breakout Board

which can be manufactured for a much cheaper cost. The Breakout Board is a pretty simple

PCB that takes the form factor of the TI MSP430 Board 19 , and includes the following: 20P

Boosterpack connectors, load switch circuitry, a 2 header pin for current measurements.

Mostly, we wanted to ensure that the load switch would work for our needs, the connector

spacing would match the stack up, and overall that fabrication of our board designed in

KiCAD, and ordered through JLCPCB, would work as we expected. The breakdown of the

estimated per board can be found here 22. It should be noted that this is only an estimate

based on the components and boards that we ordered. This however does not include the

cost of shipping for the components, as they were ordered through the ETG in Coover. The

Breakout Board was tested and everything works as we expected, so we moved onto the

MSP Simplified design. The Breakout Board is currently being used by one of the graduate

researchers.

4.8.5 MSP Simplified Design

The MSP Simplified 23 was designed to replace the current development board that is being

used as part of the BOB Node. The researchers wanted to minimize the board so that would

fit better in our 4 layer stack-up, as well as get rid of any unused circuitry. The development

board that was used is TI’s MSP430fr5994. This board acts as the controller in the BOB Node

36

setup. The MSP430 board includes an MCU, and communicates with the CC1352, controls

power distribution from the Power board, and will be be monitored by the Sniffer Node that

our team fully develops.

The MSP Simplified Removed the following logic from the MSP430 design: The debugger

logic (we will attach separately to debugger when programming), additional LEDs, unused

switches, a super capacitor, SD card, and external power connectors. The additions to the

board include: change of form factor to roughly match that of the CC1352 radio board (it is

actually a bit longer, as we included mounting holes), load switch circuitry to control power

to the CC1352 board, mounting holes, a 90 degree debugger pin, a 2 pin connector on the

power rail to potentially adjust capacitance, and DNP resistors for unused GPIOs (flexible for

future use). The breakdown of the estimated cost per board can be found here: 30. It should

be noted that this is only an estimate based on the components and boards that we ordered.

This however does not include the cost of shipping for the components, as they were ordered

through the ETG in Coover. The first revision of the board has been soldered and tested. We

will order a second revision of the board during the beginning weeks of EE 492 2 to account

for a mistake found in the pinout of the 40P connector in the first revision.

Sniffer Node Power Supply Design

The first step in designing the power supply is to estimate the battery capacity need; we

performed several measurements on the CC1352R development board. TI provides a tool

called Energy Trace on their development boards which can accurately measure the power

usage of the board. The Sniffer board will be similar to the development board so the

estimations made using this tool will give a good estimate for our design.

The development board was tested under two configurations. The first was with no transmis-

sions being sent. This represents typical operation while listening for packets and recording

data. The second was transmitting every 5ms. This represents the maximum frequency at

which packets would be sent while transmitting data back toward the Host.

The test results for both configurations are shown in Figures 16 and 17 below. The data

includes the maximum, minimum, and average power and current draws over a 10 second

test window.

Transmitting every 5ms is much more frequent than the we plan to in the final design.

Additionally, the Sniffer will be listening and not transmitting at least 50% of the time. So

37

Figure 16: Power Usage Data When not Transmitting

Figure 17: Power Usage Data When Transmitting Every 5ms

for a worst case estimate of the power usage of the Sniffer, we can assume that the Sniffer

is in normal operation 50% of the time and transmitting every 5ms 50% of the time. The

calculations for average power usage and energy needs can be calculated as shown below.

Pav g = 0.5(Pnor mal)+0.5(Ptr ans,5ms)

38

Pav g = 0.5(5.99)+0.5(26.09) = 16.04mW

The Sniffer will need to run for up to 7 days continuously. The energy needed for 7 days of

continuous operation can be estimated as follows.

Ewk = Pav g (7)(24)(60)(60) = 9.701k J

Typically, battery capacity is stated in Ah (ampere-hours) or mAh (milliampere-hours). Ah is

calculated by multiplying the number of amps by the hours of usage needed. Similarly, mAh

can be calculated by substituting mA instead of A. The battery capacity needed for the Sniffer

node is estimated below using the same assumptions that were made for the average power

usage estimation.

capaci t y −needed = (0.5(Inor mal)+0.5(Itr ans,5ms))(7)(24)

capaci t y −needed = ((0.5)(1.8152)+ (0.5)(7.9060))(7)(24) = 816.581m Ah

Rounding this value up, the worst-case scenario battery capacity needed to meet the require-

ments can be estimated as 820 mAh. However, the battery will not provide a constant voltage,

but rather the voltage will decrease as the battery discharges. The power requirements of the

Sniffer will remain the same so more current will be drawn from the battery. This results in a

larger mAh need. The voltage affects can be inserted into the mAh estimate as follows.

capaci t y −needed = (
Pav g

Vsuppli ed
)(7)(24) = 2695

Vsuppli ed
m Ah

To perfectly predict the needed battery capacity, the voltage curve of the battery would need

to be modeled and the capacity equation above would need to be integrated with respect

to the voltage. This would be tedious so instead a minimum and maximum mAh will be

calculated given the minimum and maximum voltages of the battery and judgement will

be used to determine if the capacity of the battery will be high enough. Then when the first

revision is done, we will perform more testing to determine if the battery needs to be larger

or not.

Our team generated three main design ideas for the battery portion of the power supply. The

39

three ideas are listed below with a rough cost estimation as well as the pros and cons of each

idea. All costs are estimates based on research. All rechargeable solutions provide enough

charging capacity to charge all batteries in one round of charging.

1. AA batteries which will be replaced when discharged

A typical AA or AAA battery has a voltage of 1.5V and discharges to about 1V before a strong

drop-off. Typically, AA batteries have about 2500 mAh of capacity. Standard mounts for the

batteries are cheap and readily available. Two AA batteries could be connected in series to

provide 3V maximum and 2V minimum to the board. The minimum needed capacity for this

setup would be 900 mAh and the maximum would be 1350 mAh. With a typical capacity of

2500 mAh, this setup should easily be able to meet the capacity requirements.

The cost estimation of this solution is as follows:

Item Cost per Item Quantity Total Cost

AA Battery $0.80 2 $1.60

Battery Mount $2.00 1 $2.00

Table 4: Cost Estimation for Battery Solution 1

Total cost per board: $3.60

Pros:

• Low complexity

• Cheap

Cons:

• Not very sustainable

• Marginal cost of replacing batteries ($1.60 per board per replacement)

40

2. AA batteries which will be replaced when discharged

A typical AA rechargeable battery has a voltage of 1.2V and discharges to about 0.8V before a

strong drop-off. Typically, these batteries have about 2000 - 2400 mAh of capacity. Standard

mounts for the batteries are cheap and readily available. Three batteries could be connected

in series to provide 3.6V maximum and a 2.4V supply to the board.

The minimum needed capacity for this setup would be 750 mAh and the maximum would be

1123 mAh. With a typical capacity of 2000-2500 mAh, this setup should easily be able to meet

the capacity requirements.

The cost estimation of this solution is as follows:

Item Cost per Item Quantity Total Cost

AA Recharg. Batt. (Amazon Basics) $1.10 30 $33.00

Battery Mount $2.00 10 $20.00

Battery chargers (cheap Amazon ones) $15.00 4 $60.00

Table 5: Cost Estimation for Battery Solution 2

Total cost per board: $11.03

Pros:

• Low complexity

• Sustainable

• No replacing batteries

Cons:

• Unknown Amazon battery quality (has good ratings though)

• External chargers needed

41

• Batteries must be kept track of

3. Rechargeable LIPO batteries

Many LIPO batteries have voltages that range from roughly 2.8V – 3.6V and can have various

different capacities. It is not difficult to find LIPO cells that have the needed voltage range

and have large capacities of over 1 Ah. These batteries easily satisfy the power requirements.

The downside is that they need charging circuitry and protection circuitry. They also do not

have as standard of sizes which will make them more difficult to mount. Our idea is to use a

LIPO on each Sniffer with a protection and or management IC. Then we would also design

separate charger boards which have charging ICs. This would allow the batteries to be taken

out and charged. This increases modularity.

The cost estimation of this solution is as follows:

Item Cost per Item Quantity Total Cost

LIPO $5.00 10 $50.00

Battery Mount $3.00 10 $30.00

Protection/Management ICs $0.50 10 $5.00

Charger ICs and parts $1.00 10 $10.00

Charger PCB $15.00 1 $15.00

Table 6: Cost Estimation for Battery Solution 3

Total cost per board: $11.00

Pros:

• High capacity allows for less recharging

• Sustainable

• No replacing batteries

• High voltage supplied

42

Cons:

• Complexity

• Longer design and testing time

• Non-standard sizes make mounting more difficult

Of these three options, our preference is number 3. However, we will review the options with

our client before the final decision is made.

4.9 Technology Considerations

4.9.1 Two band-pass off

The two-band pass-off design uses the CC1352s’ dual-band capabilities to switch the Sniffer

between the listening to the BOBs and sending data to the next Sniffer or Host in the com-

munication line. This process alternates the Sniffer between different bands, ensuring that

the communication back to the Host does not interfere with the communication between

BOBs. This is the method described above in Design 1. The advantages of this design are

that we have the setup for the CC1352 completed and we know it can be done this way. The

disadvantage is that it requires precise timing to ensure that the packets are not missed from

the BOB nodes. It also gives challenges and throttle to the packet received and passed back to

the Sink due to having less than 50% of the time that it can do it.

4.9.2 Internet Enabled Sniffer Node

This design described in Design 0 uses an ESP microcontroller such as an ESP01 to connect

to a WIFI network to pass data directly back to the Host without the need for a Sink node.

This design advantages are that it does not require a Sink node and does not need to have a

predetermined path back to the Host allowing for a much larger test bed. The disadvantages

are that it adds the complexity of a second microcontroller into the system and the complexity

of connecting to the internet. The main disadvantage of it is the high energy requirements of

it causing a large drain on the battery power of the Sniffer.

43

4.9.3 Two CC1352 Design

In this design we have two CC1352s built into the design one that transmits data back to the

Sink node on the Sink node band and another that collects the communication data back

from the BOB and the two communicate via UART or SPI. An advantage of this design is not

having to switch between Bands and having to maintain exact timing to ensure packets are

not dropped. The disadvantages are the additional cost, complexity, and power of having two

CC1352s on the Sniffer.

4.9.4 Both bands running on the CC1352 Simultaneously

Late in the design phase of this semester, we found that we could use both sub-1-GHz and

a 2.4GHz BLE on the CC1352s at the same time. In this design we would listen to the BOB

nodes on sub-1-GHz and communicate back to the Sink with BLE. The advantage of this

design is the simplicity of the design not having to deal with switching bands or a second

microcontroller. The disadvantage is that we do not have a clear example to work with.

4.9.5 Single band channel filtering

This design makes use of multiple channels and filtering within a single Band for the CC1352.

The design would have the CC1352 for the BOB have a small filtered range around its com-

munication frequency and the Sniffer CC1352 would have a large area of filtering that would

include the BOBs transmit frequency and would transmit outside of the BOB’s CC1352s

filtering range. The advantage of this design is that it only uses one band. The disadvantage

of this design is that depending on the way the CC1352s filter it could disturb the BOBs and

that packets could be missed.

4.10 Design Analysis

As mentioned is section 5.7, some design iterations have already taken place. Design 0 had

planned on implementing a ESP8266 for WIFI communication between Sniffer nodes, but

it was decided that adding the WIFI module would add too much power consumption and

complexity to the design. The most recent design iteration, (Design 1) has not yet been

44

implemented, so it is not yet clear if the design will be successful or not. There is still some

uncertainty over whether two communication bands of different frequencies can be run

simultaneously on the Sniffer nodes. If it is possible to run two bands simultaneously then

the Sniffers could receive data from the BOBs and send data to Sniffers farther down the

communication network at the same time. But, if only one band is active, then Sniffers will

be switched periodically between listening and sending modes to receive data from BOBs

and send received data to the next Sniffer in the communication line.

Further iterations of the design will solidify which methods of communication will be used

for receiving and transmitting data. Future iterations will also discuss changes made in the

Sniffer hardware as well as changes to the physical makeup of the stack. The team will be

making a custom Sniffer board in the future to optimize the hardware for the project. Some

unused parts may be removed, and other parts may be added, so future implementations will

discuss changes made. The Sniffer needs to be wirelessly powered for a week for testing, so a

battery will have to be incorporated into the design. Future implementations will discuss

how the addition of a battery will affect both the hardware and the test-bed stack (which will

be composed of a Sniffer, BOB and battery).

5 TESTING

5.1 Unit Testing

5.1.1 Software

Software design, as a whole, is interrupt-based coding, so our units for testing consist primar-

ily of the main interrupt sections for testing. We will accomplish testing with Code Composer

Studio, making use of the debug tool within CCS and a Python script to provide sending and

receiving of UART messages with the CC1352. Additionally, we will use a second CC1352 to

verify radio communication interrupts.

UART interrupts: Within the Sink Sniffer node, it uses UART to communicate with the Host,

running a Python script. Within this module, we have several various commands. That

is described in the ID of the UART package. These commands provide different functions

45

and have to take different paths through the interrupt handler. To test these we will set

breakpoints within each of these paths in the intended function and send a UART package

with the package ID set to every possible path and make sure it is taken correctly.

Packet ID Intended Path to Set Breakpoint

UART_SET_NODE_MESSAGES A function that sets the node messages by

sending a radio message to all the Sniffer

nodes

UART_SET_NODE_LAMBDA A function that sends the node Lambda

for the test configuration to the Sniffer

nodes

UART_START_EXPERIMENT Function to send a start experiment to

the Sniffer nodes via the radio

UART_RESET_EXPERIMENT Function to send a reset experiment to

the Sniffer nodes

UART_SET_NODE_CONFIG A function that sets the node config by

sending a radio message to all the Sniffer

nodes

UART_HANDSHAKE A function to complete the handshake

with the Python script

Table 7: UART Unit Tests

Radio interrupts: Within the all Sniffer node, it uses a radio to communicate with the Sink

and to listen to their respective BOB node. Within this interrupt set, we have several various

commands, many of which are called by the UART IDs above. These commands are set in

the payload of the Radio package. These commands provide different functions and take

different paths through the interrupt handler. To test these, we will set breakpoints within

each of these paths in the intended function and send a radio package with the payload set to

every possible path and make sure it is taken correctly. We will send these messages with a

CC1352 and ensure that the path is hit by setting a breakpoint within the function.

46

Payload Intended Path to Set Breakpoint

RADIO_SET_NODE_MESSAGES A function that sets the number of

events for the Sniffer node to gener-

ate.

RADIO_SET_NODE_LAMBDA A function that sets the node Lambda

for the test in the Sniffer node

RADIO_START_EXPERIMENT A function that starts the experiment

on its respective BOB node.

RADIO_RESET_EXPERIMENT Function to reset the experiment with

its BOB node

RADIO_SET_NODE_CONFIG Function to send the config to the

BOB node

RADIO_HANDSHAKE A function to complete the Radio

handshake with the Sink Sniffer

TIME_SYNC For non-Sink nodes, a message from

the Sink is needed to maintain a syn-

chronized clock.

TYPE_ACK Function to save the acknowledgment

back to the queue to be eventually

sent back to the Sink.

RAW_DATA Function to save the raw data from

BOB back to the queue to be eventu-

ally sent back to the Sink.

Table 8: Radio Tests

*Sink Sniffer Node Only will have a acknowledge version of these packets

**Sink Sniffer Node Only will have an interrupt for this aspect to save it back to the Host.

Time Interrupt: The time interruption needs to occur precisely and urgently to achieve the

pass of off the roles of data collection and data aggregation back to the Sniffer node. To test

this, we will have the module send a message via UART to the Python script with the exact

timing of the interrupt. We will use this test to make sure we can establish and maintain strict

timing to ensure no packets are lost.

47

GPIO Interrupts: The Sniffer node collects data about the life cycle of the BOB node and it

transmission patterns via GPIO pins on the Sniffer nodes. To track this and record it we will

have interrupts on these pins to record the timing and send data on to the Host. Similar to

the UART and Radio we will test it by setting breakpoints and then manually pulling pins up

and down to ensure that the interrupt is triggered.

Pin Record to Make

Powered On Function to add a power on or power

down event to the radio send queue

Easylink TX Function to add a transmission event

to the radio send queue

Event Drop Function to add an event drop event

to the radio send queue

Table 9: GPIO Interrupt Tests

Queue: The final unit for our software team to test is not an interrupt-based function but

is a queue that has been previously mentioned that holds a backlog of events that need to

be logged by being sent back to the Host. We will test this by setting a timer interrupt rate

with a timer to the maximum rate at which packets will be added to a queue. Then, we will

add packets to a queue, counting up to the maximum storage amount required of the queue.

Once that is complete, we will iterate through the queue removing items from the queue at

the required rate and ensuring that every item is accounted for.

5.1.2 Hardware

Below is a description of the general unit tests and process that will be taken for testing each

new PCB that is part of the system. For the purposes of our senior design project, this will

include 3 PCBs named as following: Breakout Board, MSP_Simplified, and Sniffer. These will

be broken into their own sections to provide specific details of unit testing each board.

Step 1 of testing occurs before the board is fabricated. This includes checks that are made

during the design process. The ERC, or electrical rules check, is used in KiCAD to verify

correct schematic connections. This check will be performed throughout the schematic

48

design, and will need to be passed before the layout is generated. Next, DRC, design rule

checking, will take place in the layout. In KiCAD, this will check for mismatches between

the schematic and layout, as well as layout custom rules. These rules are provided by the

fabrication company that you are ordering from and defined in the design tool by the designer.

Design rules ensure that the board can be reliably manufactured and that it follows good

design practices. These two checks are vital when designing a PCB.

Step 2 occurs after the board has been fabricated and populated. The designer visually

inspects the board for defects with a microscope. Defects can be pins that do not have a

solder connection to the pad, shorted pads, peaks in the solder, and burned components.

Often the designer will find a number of issues in this step.

In step 3, the populated board is connected to a power supply and the supply current is

measured. The power supply current is limited to a safe maximum to protect the board

while allowing adequate current for normal operation. If the supply current jumps to the

maximum allowed value, then there is likely a short in the board. This check serves to find

major issues before the board is used and protects against damaging the board. The board

software independent functionality can also be tested using power supplies, multimeters,

oscilloscopes, and logic analyzers.

In step 4, the debugger is connected, and the board is programmed with any software it will

run. Often, if there is an issue on the board, the debugger will not be able to successfully

communicate with and program the board. This would indicate the need to go back to steps

2 and 3 to find the issue in the board.

In step 5, the software dependent elements of the board are tested by simulating the operating

environment. For example, if a motion sensor was used on the board, then the board could

be shaken and the data in software could be analyzed to see if motion is sensed or not.

Initial tests are very basic and usually just establish communication with peripherals or basic

functionality. Further testing and calibration are pursued later to verify that the elements

work as expected.

49

Element Under Test Testing Task Expected Result

Solder Joints Visually inspect the PCB with

a microscope for any solder-

ing issues.

Ensure none of the following are

present: Shorts between pins,

peaks of solder at connections,

solder on pin but not connected

to pad, component pins not

aligned.

Components Visually inspect the PCB

(with a microscope for 0402

or smaller) for any issues

with components or the

board

Ensure none of the following

are present: Leftover flux on

board, burned or damaged dis-

crete components, missing pins,

melted plastic, damaged pads or

traces, missing parts.

Power to ground iso-

lation

Continuity test between

power and ground

Should not see any measurable

current exchange.

Power rail check Power the 3.3V rail and GND

rail with a power supply.

Probe the 3V3 and GND test

points with a multimeter.

The expected outputs are 3.3V

and 0V, respectively. Significant

margins (100s of mV) off this ex-

pected value should be evalu-

ated further.

Header pin isolation Run continuity checks be-

tween all neighboring pins

with a multimeter.

The expected output is no beep-

ing (this indicates connectivity)

from the multimeter, when the

nets are not connected on the

schematic.

Table 10: Breakout Board Unit Testing

50

Element Under Test Testing Task Expected Result

EN Test for load

switch

Provide 3.3V and GND power

rails to the PCB with a power

supply. Measure the VOUT

voltage with a multimeter.

Next, provide 1V on the en-

able pin and measure the

VOUT voltage with a multi-

meter.

With no enable voltage provided

we expect to see 0V on the out-

put and with the enable voltage

we expect approximately 3.3V

(within 100mV) on the output.

Monitor Current

output from the

load switch

Using an ammeter, probe the

open circuit provided on the

board. This can be done ei-

ther across the two-pin con-

nector or the DNP resistor.

Should show very little current

drawn from the load switch, as

indicated on the datasheet.

Table 11: Breakout Board Unit Tests

Element Under Test Testing Task Expected Result

Solder Joints Visually inspect the PCB with

a microscope for any solder-

ing issues.

Ensure none of the following are

present: Shorts between pins,

peaks of solder at connections,

solder on pin but not connected

to pad, component pins not

aligned.

Components Visually inspect the PCB

(with a microscope for 0402

or smaller) for any issues

with components or the

board

Ensure none of the following

are present: Leftover flux on

board, burned or damaged dis-

crete components, missing pins,

melted plastic, damaged pads or

traces, missing parts.

Power to ground iso-

lation

Continuity test between

power and ground

Should not see any measurable

current exchange.

Table 12: MSP Simplified Unit Testing

51

Element Under Test Testing Task Expected Result

Power rail check Power the 3.3V rail and GND

rail with a power supply.

Probe the 3V3 and GND test

points with a multimeter.

The expected outputs are 3.3V

and 0V, respectively. Significant

margins (100s of mV) off this ex-

pected value should be evalu-

ated further.

Header pin isolation Run continuity checks be-

tween all neighboring pins

with a multimeter.

The expected output is no beep-

ing (this indicates connectivity)

from the multimeter, when the

nets are not connected on the

schematic.

EN Test for load

switch

Provide 3.3V and GND power

rails to the PCB with a power

supply. Measure the VOUT

voltage with a multimeter.

Next, provide 1V on the en-

able pin and measure the

VOUT voltage with a multi-

meter.

With no enable voltage provided

we expect to see 0V on the out-

put and with the enable voltage

we expect approximately 3.3V

(within 100mV) on the output.

Hardware reset but-

tons

Work with Software to power

up and flash the microcon-

troller. Depress and release

the reset button (S2)

Software indicators show a suc-

cessful reset, and that the device

can continue normal operation

after a reset.

Table 13: MSP Simplified Unit Tests

52

Element Under Test Testing Task Expected Result

Solder Joints Visually inspect the PCB with

a microscope for any solder-

ing issues.

Ensure none of the following are

present: Shorts between pins,

peaks of solder at connections,

solder on pin but not connected

to pad, component pins not

aligned.

Components Visually inspect the PCB

(with a microscope for 0402

or smaller) for any issues

with components or the

board

Ensure none of the following

are present: Leftover flux on

board, burned or damaged dis-

crete components, missing pins,

melted plastic, damaged pads or

traces, missing parts.

Power to ground iso-

lation

Continuity test between

power and ground

Should not see any measurable

current exchange.

Power rail check Power the 3.3V rail and GND

rail with a power supply.

Probe the 3V3 and GND test

points with a multimeter.

The expected outputs are 3.3V

and 0V, respectively. Significant

margins (100s of mV) off this ex-

pected value should be evalu-

ated further.

Header pin isolation Run continuity checks be-

tween all neighboring pins

with a multimeter.

The expected output is no beep-

ing (this indicates connectivity)

from the multimeter, when the

nets are not connected on the

schematic.

Hardware reset but-

tons

Work with Software to power

up and flash the microcon-

troller. Depress and release

the reset button

Software indicators show a suc-

cessful reset, and that the device

can continue normal operation

after a reset.

Table 14: Sniffer Unit Tests

53

5.2 Interface Testing

5.2.1 Software

Many software tests of interfaces between multiple software subsystems need to test the

bandwidth of communication between multiple nodes. To be able to achieve the required

recording goals of the project we must have certain data rates between aspects of the project.

Similar to the unit tests we will use CCS, several CC1352s, and a python script to test these

interfaces.

UART: To record the data at the Host, all data from the test needs to be communicated from

the Sink to the Host. We will test this with a timer to create a UART data rate being sent from

the CC1352 Sink to the Host computer at a rate of 1 packet every 1 ms. As packets are created,

it will increase the counter to ensure a unique identifier for each packet. We can then go

through all records and ensure all are accounted for.

Radio Transmit: Similar to UART, we will test the data rate, sending data back to Sink from a

Sniffer node. We will set a timer to send data in our largest package size of 128 bits back at a

desired rate of 1 packet every 5 ms with unique data and ensure that no packets are missed in

receiving. This radio interface test will be conducted for both Sniffer to Sink and from Sniffer

to Sniffer, as both paths need to maintain a high data rate.

54

5.2.2 Hardware:

Element Under Test Testing Task Expected Result

Debugger and Pro-

grammability of Mi-

crocontroller

Connect PCB to power.

Connect the debugger to

the computer and to the

PCB. Set up any neces-

sary parameters on the

computer side. Flash the

microcontroller with the

code.

Debugger is able to establish

communication with the micro-

controller. Device is success-

fully flashed.

Antenna connection

and functionality

Connect the antenna to

the proper port. Power up

and flash the device with

a program that monitors

communications. Set up

an unused CC1352 board

to send communications.

Monitor the received com-

munications of the new

Sniffer.

Sniffer should receive RF signals.

If no signals are received, there

is a problem.

Test 3V3_CC line on

the CC board

When the board stack

is in place and initial

unit testing is complete

for the MSP_Simplified,

probe the 3.3V line on the

CC1352 with a voltmeter.

You should read approximately

3.3V on the multimeter for the

power rail on the CC1352 board.

Table 15: MSP_Simplified Interface Testing

55

5.3 Integration Testing

5.3.1 Software

Time Sync: A major aspect of our system is the transition duties between multiple Sniffer

nodes, which require them to maintain synchronized time. We will test the time synchroniza-

tion system by letting multiple nodes run independently, with the Sink sending a time sync

message out periodically. At the end of the day-long test, we will check the time of each node

and ensure they are still within an acceptable margin of error.

Avoids Lockup: With all the interruptions that are occurring, there is the possibility of a

lockup scenario. To test for this, we will take our Sniffer node and drive the GPIO pins high

and low while simultaneously having radio transmissions incoming and having the timing

interrupts active. We will ensure these all occur correctly via a log sent out via UART packets.

A similar testing set up will be done for the Sink Sniffer node setup, where it also has UART

commands being sent to it from the Host.

Band handoff: The band handoff is required for the recording of data from BOBs and the

aggregation of data back to the Host. To test the receiving/transmitting pass-off method for

Sniffers. A pair of Sniffers will listen to a pair of BOBs. The Sniffers will have to alternate

which Sniffer is listening to the BOBs and which is sending data received from the BOBs

back to the Host. It’s important to not lose data, so some overlap time will exist when both

Sniffers are listening to BOBs. We will have a false BOB send out packets relatively constantly

incrementing the payload, and we will make sure that no packet of a payload number is

missed.

5.3.2 Hardware

Stack integration- Test signals both the I/O and power ports in the main Boosterpack connec-

tor that is distributed throughout the stack. Ensure one does not impact the performance of

the entire stack.

Integration between the physical boards to ensure mechanical stability throughout the

entirety of the stack.

56

Element Under Test Testing Task Expected Result

Stack Integration Probe the power port and

I/O connections in the

boosterpack connector.

The I/O will need to be

run with a series of soft-

ware tests to set and then

measure the recorded I/O

values. Ensure that there

is no loss in power droop

across the stack and no

effects from I/O while

other boards are running.

We expect to see the pro-

grammed I/O values as well as

a consistent shared power rail

across the stack. Isolation is ex-

pected across GPIOs that are be-

ing written on another board.

Mechanical Stack In-

tegration

Test mechanical durabil-

ity between the physical

boards to ensure mechan-

ical stability throughout

the entirety of the stack.

We expect the stack to stay in-

tact and operable through all

mechanically strenuous condi-

tions.

Table 16: MSP_Simplified Integration Testing

5.3.3 Sub-System

MSP430: To test the Custom MSP-430 board we will flash the program that is currently

running the tests onto the new board with a different GPIO pinout changed in the software.

We will then Run a current test with the custom msp-430 board and ensure that it functions

the same as using a development board.

Custom Sniffer Board: Similar to the custom MSP-430 we will load the current test setup

onto our custom board and update for our GPIO set and for only one BOB node and ensure it

functions in tests correctly.

Custom BOB stack: With the updated code sets above for the alternative pinouts, we can

run our full stack doing a test with the original code base, just our pinout and our hardware,

ensuring the hardware works properly together.

57

5.4 System Testing

Running System level tests, we will use a variety of tools to accomplish it. We will continue

to use CCS, Python script, and development boards. Additionally, we will build the tools

of a CC1352 dev board running custom code to mimic the behavior of a BOB node with a

hardcoded performance we can check for all performances in the logs. Additionally, we will

make use of the current setup.

We will run a test with our mock BOB discussed above that will test all portions of the system:

timers, GPIO interrupts, UART interrupts, radio communication, and queues. We can set that

BOB to run a maximum packet rate of a packet every 5 ms. We will set up a test with the Host,

Sink, and two Sniffers monitoring two BOBs. Then, we will expand it four Sniffers and 4 BOBs

arrayed in a 2 by 2 checkered board setup.

To test the Sniffer setup in a less-known environment, we will set our test next to the current

setup running a test and comparing the logs to ensure that they get the same logged data. We

can receive the same wireless data being “sniffed” from the BOBs running and be connected

into the power and transmit pins with the GPIO of the Sniffer. The data logged by this will

then be mapped to the current systems log to ensure that they line up properly.

5.5 Regression Testing

Our regression testing will consist exclusively of the mock BOB node that will be designed for

system testing. To ensure that future iterations of our design continue to fit requirements,

the mock BOB node can have a test run on it, and if all the predetermined data is recorded, it

will help ensure functionality does not get broken. It will continue to use the Python script,

our testbed setup, and a CC1352 development board.

5.6 Acceptance Testing

The acceptance tests consist of two parts:

We will be given a simple test setup that the research assistants run on the current setup.

We will run this test on our setup and ensure that our code configures things correctly and

58

that the code has the data output all recorded and organized in an acceptable way for the

researchers.

The follow-up acceptance test will give our product setup with documentation to the research

assistants and have them set up and run their test with the exclusive help of the documenta-

tion we wrote to ensure they will be able to make use of it once we graduate and move on and

future research groups can use our infrastructure.

5.7 Results

Hardware Results: For our hardware, we performed unit tests on both of our PCBs that were

manufactured. This includes the Breakout Board and the MSP Simplified. The Breakout

Board passed all of the unit checks that we had listed in our test plan. The MSP Simplified did

not meet all of the unit checks. We found issues with the design of the board as there was

an incorrect footprint for one of the components, and the order of the pins was reversed for

one of our 20P connectors. This makes it unusable in the hardware stack, and so a second

revision will be ordered during the first few weeks of EE 492. This is outlined in our Gantt

chart 2.

Through our testing so far, we have found a couple of important numbers we needed for

decision making and design work.

• Worst Case Packet Send Time: 12 ms

• Band-Switch Time Cost: 30 ms

6 IMPLEMENTATION

Much implementation work can be seen in the design section

Our implementation plan is split into hardware and software

59

6.1 Hardware

1. Assemble MSP Simplified Board

2. Test MSP Simplified Board

3. Complete MSP Simplified second revision

4. Complete Sniffer schematic

5. Complete Sniffer layout

6. Assemble Sniffer PCB

7. Test Sniffer PCB

8. Complete second Sniffer revision, if needed

6.2 Software

1. Write Sink Node code

2. Write time sync function

3. Create mock BOB code for cc1352

4. Test BLE and Sub-1-GHz design

5. Update current Sniffer Code to use radio instead of UART

6. Create a queue structure for holding messages to be sent

7. If Band switching design create Band Switching Algorithm

8. Run Unit interface, and integration tests

Once both hardware and software are complete we will move on to system, acceptance, and

regression testing.

60

61

7 PROFESSIONALISM

7.1 Areas of Responsibility

Areas of Responsibility IEEE Definition NSPE vs. IEEE Comparison

Work Competence Conduct tasks with excellence,

honesty, adherence to sched-

ules, and a demonstration of

professional expertise.

IEEE defintion builds on the NSPE

Canon defintion for work competence

by including quality and timliness as

important factors.

Financial Responsibil-

ity

Provide products and services

that offer tangible value and are

reasonably priced.

NSPE focuses more on the import-

nace of loyality to an employer while

IEEE focus is more on the resonable

price of the product.

Communication Hon-

esty

Present work with honesty, de-

void of deception, and in a man-

ner comprehensible to stake-

holders.

NSPE states that only truthful state-

ments should be made to the pub-

lic, while IEEE defintion emphaszies

the understanding of the stakeholders

specifically.

Health Safety, Well Be-

ing

Reduce hazards to the safety,

health, and welfare of stakehold-

ers.

NSPE states the health and safety of

the public is paramount, while IEEE

focuses on the health and safety of the

stakeholders.

Property Ownership Show regard for the property,

ideas, and information belong-

ing to clients and others.

NSPE uses the same defintion as the

one used for financial responsibility

claiming the importance of loyalty to

the employer. IEEE defintion is more

specifc in th meaning of property.

Sustainability Safeguard the environment and

preserve natural resources both

on a local and global scale.

The "Sustainability" area of responsi-

blity does not exist for NSPE.

Social Responsibility Create goods and services that

contribute positively to society

and local communities.

Both defintions are similar, but NSPE

includes the statment that things

should be done lawfully with the end

goal of making the profession more

useful and improving its reputation.

Table 17: Areas of Responsibility

62

7.2 Project Specific Professional Responsibility Areas

Work Competence - High. Work competence is the most important IEEE standard for our

project. Given that Senior design is limited by assignment deadlines and graduation dates,

it is important that we complete tasks in a timely manner. The success of the project is

dependent on a large code base working with hardware over a scalable communication

network, so it is important that our work is high quality to reduce the chances of errors in the

design.

Financial Responsibility - Low. Based on the IEEE standard, there is no financial responsibil-

ity for this project, but the BOBs being tested by our design team may someday be used as a

means of data collection, in which case the IEEE standard for financial responsibility would

apply.

Communication Honesty - High. It is important that teammates are honest with each other

and the clients of the project. Honesty will allow for faster progress as problems in the deign

process will be clear making it easier to find solutions.

Health Safety, Well Being -N/A. There are not any direct safety concerns for anyone involved

in the project.

Property Ownership -Medium. Throughout the project team members will use circuit boards

and software provided by the client. Team members should treat the equipment used with

respect and avoid damaging the equipment.

Sustainability - N/A. There are no direct environmental threats from the project. The testing

area will be contained to a single room, and should not have any affect on the environment.

Social Responsibility - N/A. The senior design project does not produce a good or service, so

by the IEEE definition for social responsibility the standard is not applicable. It is important

to note that the devices we are testing (the BOB communication network) could potentially

become a product that has an affect on a community, but that is beyond the scope of the

senior design project.

63

7.3 Most Applicable Professional Responsibility Area

The most applicable area of responsibility is work competence. Considering the constraints

imposed by assignment deadlines and graduation dates for Senior design, it is crucial to

ensure timely completion of tasks. The project’s success relies on a substantial code base

interacting with hardware across a scalable communication network, underscoring the

significance of maintaining high-quality work to minimize the risk of design errors.

8 CLOSING MATERIAL

8.1 Discussion

The results we had from the semester of EE 491 include the completion of manufacturing

the two PCBs, the EnergyTrace calculations on the CC1352, timing communications tests for

Software, and the Unit testing for both the Breakout Board PCB and the MSP Simplified. A

second revision of the MSP Simplified will be made during the next semester, as we found an

incorrect footprint and inverted order of our Boosterpack pin connectors.

8.2 Conclusion

Looking ahead, we have a direction of where we are headed with the project, as well as how

to get there. It will take us four to eight weeks to finish up our software and hardware design,

at which point we will be able to document, test, and verify the product with the client. We

are on pace to meet all of our requirements within the specified time frame.

64

REFERENCES

[1] Texas Instruments, “Launch your design start@ ti launchpadtm sensortag kit with

simplelinktm wireless mcu.” https://www.ti.com/lit/ug/swau127a/swau127a.

pdf?ts=1701604662638&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%

252FLPSTK-CC1352R, 2023. Accessed: Dec. 03, 2023.

https://www.ti.com/lit/ug/swau127a/swau127a.pdf?ts=1701604662638&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FLPSTK-CC1352R
https://www.ti.com/lit/ug/swau127a/swau127a.pdf?ts=1701604662638&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FLPSTK-CC1352R
https://www.ti.com/lit/ug/swau127a/swau127a.pdf?ts=1701604662638&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FLPSTK-CC1352R

65

66

9 APPENDICES

9.1 Breakout Board Design Files

Figure 18: Breakout Board Schematic

67

Figure 19: Breakout Board Layout

68

Figure 20: Breakout Board 3D Layout

69

Figure 21: Breakout Board BOM Order

70

Figure 22: Breakout Board Cost Per Board

71

72

9.2 Simplified MSP-430 Board

Figure 23: MSP Simplified Schematic Sheet 1

73

Figure 24: MSP Simplified Schematic Sheet 2

74

Figure 25: MSP Simplified Schematic Sheet 3

75

Figure 26: MSP Simplified Schematic Sheet 4

76

Figure 27: MSP Simplified Layout

77

Figure 28: MSP Simplified 3D Layout

78

Figure 29: MSP Simplified BOM Order

79

Figure 30: MSP Simplified Cost Per One Board

80

9.3 Team Contract

Team Contract: _sdmay24-25__

TEAM MEMBERS

1. Thomas Gaul

2. Matthew Crabb

3. Spencer Sutton

4. Tori Kittleson

5. Ian Hollingworth

TEAM PROCEDURES

Regular Team Meetings

• Team meeting: Wednesdays at 7:30 pm in person at TLA.

• Client/advisor meeting: Tuesdays at 8:30 am in person at Durham 353 Conference

room.

• TA meeting (Thomas, Matt, Tori): Wednesdays at 2:30 pm in Senior Design Lab.

• TA meeting (Spencer, Ian): Fridays at 1 pm in Senior Design Lab.

• Workday Monday 3:30 PM in the TLA

Communication

• Teams account for updates, reminders, and scheduling issues within the group and

with the research team.

• Teams account for updates with the client/advisor.

81

Decision-making Policy

The majority vote for the final decision, focusing on consensus when possible. Diverted

opinions can be discussed with the client/advisor for advice.

Record Keeping

Ian and Matthew will handle shared document redundancy on Teams.

PARTICIPATION EXPECTATIONS

Attendance and Punctuality

Attend when possible, communicate scheduling conflicts, catch up on missed meetings, and

notify if running substantially late.

Responsibility for Assignments

Complete tasks on time, give warnings if deadlines might be missed, and avoid procrastina-

tion.

Communication with Team Members

Respond to team messages within 24 hours on weekdays, 36 hours on weekends, and a

reasonable time on breaks.

Commitment to Team Decisions

Put full effort into assignments and ensure fair work distribution.

82

LEADERSHIP

Roles

• Thomas: Lead, Technical software

• Matt: Technical hardware

• Tori: Technical hardware

• Ian: Technical electrical systems

• Spencer: Technical software

Supporting and Guiding Work

Weekly meetings and sub-meets for team members working on project portions together.

Recognizing Contributions

Weekly meetings to discuss progress and record progress in weekly deliverables.

COLLABORATION AND INCLUSION

Team Member Skills

• Ian Hollingworth: C programming, PCB design, Digital circuit design, Verilog, Cadence

• Tori Kittleson: Hardware circuit design, Cadence, Altium PCB design

• Matthew Crabb: C Programming, circuit design, PCB layout, Cadence, Altium, MATLAB,

PCB debugging, circuit measurement

83

• Thomas Gaul: Embedded Systems, hardware design, firmware experience

• Spencer Sutton: Embedded Systems, Digital Logic/microprocessors, Cadence, Physics

Encouraging Contributions

Weekly meetings for idea exchange and progress presentation.

Resolving Collaboration Issues

Bring up issues in weekly team meetings or with the team lead or Dr. Duwe if uncomfortable.

GOAL-SETTING, PLANNING, AND EXECUTION

Team Goals

• Concrete plan and presentation for project completion in the second semester.

• First revision of hardware completed and ordered for a second revision next semester,

with completed testing code.

Planning and Assigning Work

Volunteer for tasks and select the most qualified individual if no one is particularly interested.

Keeping on Task

Create weekly goals and plan work on a week-by-week basis for the remainder of the semester.

84

CONSEQUENCES FOR NOT ADHERING TO TEAM CONTRACT

Handling Infractions

Discuss conflicts as a team and try to resolve to fit the needs of all team members.

Continued Infractions

If problems persist, discuss with the client/advisor for suggestions to adjust to the team’s

needs.

ACKNOWLEDGMENT

Confirmation of Understanding

1. Tori Kittleson DATE 9/8/23

2. Ian Hollingworth DATE 9/8/23

3. Matthew Crabb DATE 9/8/23

4. Thomas Gaul DATE 9/8/23

5. Spencer Sutton DATE 9/8/23

	Team
	Team Members
	Required Skill Sets for Your Project
	Skill Sets covered by the Team
	Project Management Style Adopted by the team
	Initial Project Management Roles

	Introduction
	Problem Statement
	Requirements & Constraints
	Requirements
	Constraints

	Engineering Standards
	Intended Users and Uses

	Project Plan
	TASK DECOMPOSITION
	Project Management/Tracking Procedures
	Project Proposed Milestones, Metrics, and Evaluation Criteria
	Project Timeline/Schedule
	Risks and Risk Management/Mitigation
	Personnel Effort Requirements
	Other Resource Requirements

	Design
	Design Content
	Design Complexity
	Modern Engineering Tools
	Design Context
	Prior Work/Solutions
	Design Decisions
	Design 0 (Initial Design)
	Design Visual and Description
	Functionality

	Design 1 (Design Iteration)
	Design Visual and Description
	Functionality
	Design of Pinouts for the Stack
	Breakout Board Design
	MSP Simplified Design

	Technology Considerations
	Two band-pass off
	Internet Enabled Sniffer Node
	Two CC1352 Design
	Both bands running on the CC1352 Simultaneously
	Single band channel filtering

	Design Analysis

	Testing
	Unit Testing
	Software
	Hardware

	Interface Testing
	Software
	Hardware:

	Integration Testing
	Software
	Hardware
	Sub-System

	System Testing
	Regression Testing
	Acceptance Testing
	Results

	Implementation
	Hardware
	Software

	Professionalism
	Areas of Responsibility
	Project Specific Professional Responsibility Areas
	Most Applicable Professional Responsibility Area

	Closing Material
	Discussion
	Conclusion

	Appendices
	Breakout Board Design Files
	Simplified MSP-430 Board
	Team Contract

